-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy patheval.py
752 lines (651 loc) · 33.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
import math, logging, copy, json
from collections import Counter, OrderedDict
from nltk.util import ngrams
import ontology
from config import global_config as cfg
from clean_dataset import clean_slot_values
class BLEUScorer(object):
## BLEU score calculator via GentScorer interface
## it calculates the BLEU-4 by taking the entire corpus in
## Calulate based multiple candidates against multiple references
def __init__(self):
pass
def score(self, parallel_corpus):
# containers
count = [0, 0, 0, 0]
clip_count = [0, 0, 0, 0]
r = 0
c = 0
weights = [0.25, 0.25, 0.25, 0.25]
# accumulate ngram statistics
for hyps, refs in parallel_corpus:
hyps = [hyp.split() for hyp in hyps]
refs = [ref.split() for ref in refs]
for hyp in hyps:
for i in range(4):
# accumulate ngram counts
hypcnts = Counter(ngrams(hyp, i + 1))
cnt = sum(hypcnts.values())
count[i] += cnt
# compute clipped counts
max_counts = {}
for ref in refs:
refcnts = Counter(ngrams(ref, i + 1))
for ng in hypcnts:
max_counts[ng] = max(max_counts.get(ng, 0), refcnts[ng])
clipcnt = dict((ng, min(count, max_counts[ng])) \
for ng, count in hypcnts.items())
clip_count[i] += sum(clipcnt.values())
# accumulate r & c
bestmatch = [1000, 1000]
for ref in refs:
if bestmatch[0] == 0: break
diff = abs(len(ref) - len(hyp))
if diff < bestmatch[0]:
bestmatch[0] = diff
bestmatch[1] = len(ref)
r += bestmatch[1]
c += len(hyp)
# computing bleu score
p0 = 1e-7
bp = 1 if c > r else math.exp(1 - float(r) / float(c))
p_ns = [float(clip_count[i]) / float(count[i] + p0) + p0 \
for i in range(4)]
s = math.fsum(w * math.log(p_n) \
for w, p_n in zip(weights, p_ns) if p_n)
bleu = bp * math.exp(s)
return bleu * 100
class MultiWozEvaluator(object):
def __init__(self, reader):
self.reader = reader
self.domains = ontology.all_domains
self.domain_files = self.reader.domain_files
self.all_data = self.reader.data
self.test_data = self.reader.test
self.bleu_scorer = BLEUScorer()
self.all_info_slot = []
for d, s_list in ontology.informable_slots.items():
for s in s_list:
self.all_info_slot.append(d+'-'+s)
# only evaluate these slots for dialog success
self.requestables = ['phone', 'address', 'postcode', 'reference', 'id']
def pack_dial(self, data):
dials = {}
for turn in data:
dial_id = turn['dial_id']
if dial_id not in dials:
dials[dial_id] = []
dials[dial_id].append(turn)
return dials
def run_metrics(self, data):
if 'all' in cfg.exp_domains:
metric_results = []
metric_result = self._get_metric_results(data)
metric_results.append(metric_result)
if cfg.eval_per_domain:
# all domain experiments, sub domain evaluation
domains = [d+'_single' for d in ontology.all_domains]
domains = domains + ['restaurant_train', 'restaurant_hotel','restaurant_attraction', 'hotel_train', 'hotel_attraction',
'attraction_train', 'restaurant_hotel_taxi', 'restaurant_attraction_taxi', 'hotel_attraction_taxi', ]
for domain in domains:
file_list = self.domain_files.get(domain, [])
if not file_list:
print('No sub domain [%s]'%domain)
metric_result = self._get_metric_results(data, domain, file_list)
if metric_result:
metric_results.append(metric_result)
else:
# sub domain experiments
metric_results = []
for domain, file_list in self.domain_files.items():
if domain not in cfg.exp_domains:
continue
metric_result = self._get_metric_results(data, domain, file_list)
if metric_result:
metric_results.append(metric_result)
return metric_results
def validation_metric(self, data):
bleu = self.bleu_metric(data)
accu_single_dom, accu_multi_dom, multi_dom_num = self.domain_eval(data)
success, match, req_offer_counts, dial_num = self.context_to_response_eval(data,
same_eval_as_cambridge=cfg.same_eval_as_cambridge)
return bleu, success, match
def _get_metric_results(self, data, domain='all', file_list=None):
metric_result = {'domain': domain}
bleu = self.bleu_metric(data, file_list)
if cfg.bspn_mode == 'bspn' or cfg.enable_dst:
jg, slot_f1, slot_acc, slot_cnt, slot_corr = self.dialog_state_tracking_eval(data, file_list)
jg_nn, sf1_nn, sac_nn, _, _ = self.dialog_state_tracking_eval(data, file_list, no_name=True, no_book=False)
jg_nb, sf1_nb, sac_nb, _, _ = self.dialog_state_tracking_eval(data, file_list, no_name=False, no_book=True)
jg_nnnb, sf1_nnnb, sac_nnnb, _, _ = self.dialog_state_tracking_eval(data, file_list, no_name=True, no_book=True)
metric_result.update({'joint_goal':jg, 'slot_acc': slot_acc, 'slot_f1':slot_f1})
if cfg.bspn_mode == 'bsdx':
jg_, slot_f1_, slot_acc_, slot_cnt, slot_corr = self.dialog_state_tracking_eval(data, file_list, bspn_mode='bsdx')
jg_nn_, sf1_nn_, sac_nn_, _, _ = self.dialog_state_tracking_eval(data, file_list, bspn_mode='bsdx', no_name=True, no_book=False)
metric_result.update({'joint_goal_delex':jg_, 'slot_acc_delex': slot_acc_, 'slot_f1_delex':slot_f1_})
info_slots_acc = {}
for slot in slot_cnt:
correct = slot_corr.get(slot, 0)
info_slots_acc[slot] = correct / slot_cnt[slot] * 100
info_slots_acc = OrderedDict(sorted(info_slots_acc.items(), key = lambda x: x[1]))
act_f1 = self.aspn_eval(data, file_list)
avg_act_num, avg_diverse_score = self.multi_act_eval(data, file_list)
accu_single_dom, accu_multi_dom, multi_dom_num = self.domain_eval(data, file_list)
success, match, req_offer_counts, dial_num = self.context_to_response_eval(data, file_list,
same_eval_as_cambridge=cfg.same_eval_as_cambridge)
req_slots_acc = {}
for req in self.requestables:
acc = req_offer_counts[req+'_offer']/(req_offer_counts[req+'_total'] + 1e-10)
req_slots_acc[req] = acc * 100
req_slots_acc = OrderedDict(sorted(req_slots_acc.items(), key = lambda x: x[1]))
if dial_num:
metric_result.update({'act_f1':act_f1,'success':success, 'match':match, 'bleu': bleu,
'req_slots_acc':req_slots_acc, 'info_slots_acc': info_slots_acc,'dial_num': dial_num,
'accu_single_dom': accu_single_dom, 'accu_multi_dom': accu_multi_dom,
'avg_act_num': avg_act_num, 'avg_diverse_score': avg_diverse_score})
if domain == 'all':
logging.info('-------------------------- All DOMAINS --------------------------')
else:
logging.info('-------------------------- %s (# %d) -------------------------- '%(domain.upper(), dial_num))
if cfg.bspn_mode == 'bspn' or cfg.enable_dst:
logging.info('[DST] joint goal:%2.1f slot acc: %2.1f slot f1: %2.1f act f1: %2.1f'%(jg, slot_acc, slot_f1, act_f1))
logging.info('[DST] [not eval name slots] joint goal:%2.1f slot acc: %2.1f slot f1: %2.1f'%(jg_nn, sac_nn, sf1_nn))
logging.info('[DST] [not eval book slots] joint goal:%2.1f slot acc: %2.1f slot f1: %2.1f'%(jg_nb, sac_nb, sf1_nb))
logging.info('[DST] [not eval name & book slots] joint goal:%2.1f slot acc: %2.1f slot f1: %2.1f'%(jg_nnnb, sac_nnnb, sf1_nnnb))
if cfg.bspn_mode == 'bsdx':
logging.info('[BDX] joint goal:%2.1f slot acc: %2.1f slot f1: %2.1f act f1: %2.1f'%(jg_, slot_acc_, slot_f1_, act_f1))
logging.info('[BDX] [not eval name slots] joint goal:%2.1f slot acc: %2.1f slot f1: %2.1f'%(jg_nn_, sac_nn_, sf1_nn_))
logging.info('[CTR] match: %2.1f success: %2.1f bleu: %2.1f'%(match, success, bleu))
logging.info('[CTR] ' + '; '.join(['%s: %2.1f' %(req,acc) for req, acc in req_slots_acc.items()]))
logging.info('[DOM] accuracy: single %2.1f / multi: %2.1f (%d)'%(accu_single_dom, accu_multi_dom, multi_dom_num))
if self.reader.multi_acts_record is not None:
logging.info('[MA] avg acts num %2.1f avg slots num: %2.1f '%(avg_act_num, avg_diverse_score))
return metric_result
else:
return None
def bleu_metric(self, data, eval_dial_list=None):
gen, truth = [],[]
for row in data:
if eval_dial_list and row['dial_id'] +'.json' not in eval_dial_list:
continue
gen.append(row['resp_gen'])
truth.append(row['resp'])
wrap_generated = [[_] for _ in gen]
wrap_truth = [[_] for _ in truth]
if gen and truth:
sc = self.bleu_scorer.score(zip(wrap_generated, wrap_truth))
else:
sc = 0.0
return sc
def value_similar(self, a,b):
return True if a==b else False
# the value equal condition used in "Sequicity" is too loose
if a in b or b in a or a.split()[0] == b.split()[0] or a.split()[-1] == b.split()[-1]:
return True
return False
def _bspn_to_dict(self, bspn, no_name=False, no_book=False, bspn_mode = 'bspn'):
constraint_dict = self.reader.bspan_to_constraint_dict(bspn, bspn_mode = bspn_mode)
constraint_dict_flat = {}
for domain, cons in constraint_dict.items():
for s,v in cons.items():
key = domain+'-'+s
if no_name and s == 'name':
continue
if no_book:
if s in ['people', 'stay'] or key in ['hotel-day', 'restaurant-day','restaurant-time'] :
continue
constraint_dict_flat[key] = v
return constraint_dict_flat
def _constraint_compare(self, truth_cons, gen_cons, slot_appear_num=None, slot_correct_num=None):
tp,fp,fn = 0,0,0
false_slot = []
for slot in gen_cons:
v_gen = gen_cons[slot]
if slot in truth_cons and self.value_similar(v_gen, truth_cons[slot]): #v_truth = truth_cons[slot]
tp += 1
if slot_correct_num is not None:
slot_correct_num[slot] = 1 if not slot_correct_num.get(slot) else slot_correct_num.get(slot)+1
else:
fp += 1
false_slot.append(slot)
for slot in truth_cons:
v_truth = truth_cons[slot]
if slot_appear_num is not None:
slot_appear_num[slot] = 1 if not slot_appear_num.get(slot) else slot_appear_num.get(slot)+1
if slot not in gen_cons or not self.value_similar(v_truth, gen_cons[slot]):
fn += 1
false_slot.append(slot)
acc = len(self.all_info_slot) - fp - fn
return tp,fp,fn, acc, list(set(false_slot))
def domain_eval(self, data, eval_dial_list = None):
dials = self.pack_dial(data)
corr_single, total_single, corr_multi, total_multi = 0, 0, 0, 0
dial_num = 0
for dial_id in dials:
if eval_dial_list and dial_id+'.json' not in eval_dial_list:
continue
dial_num += 1
dial = dials[dial_id]
wrong_pred = []
prev_constraint_dict = {}
prev_turn_domain = ['general']
for turn_num, turn in enumerate(dial):
if turn_num == 0:
continue
true_domains = self.reader.dspan_to_domain(turn['dspn'])
if cfg.enable_dspn:
pred_domains = self.reader.dspan_to_domain(turn['dspn_gen'])
else:
turn_dom_bs = []
if cfg.enable_bspn and not cfg.use_true_bspn_for_ctr_eval and \
(cfg.bspn_mode == 'bspn' or cfg.enable_dst):
constraint_dict = self.reader.bspan_to_constraint_dict(turn['bspn_gen'])
else:
constraint_dict = self.reader.bspan_to_constraint_dict(turn['bspn'])
for domain in constraint_dict:
if domain not in prev_constraint_dict:
turn_dom_bs.append(domain)
elif prev_constraint_dict[domain] != constraint_dict[domain]:
turn_dom_bs.append(domain)
aspn = 'aspn' if not cfg.enable_aspn else 'aspn_gen'
turn_dom_da = []
for a in turn[aspn].split():
if a[1:-1] in ontology.all_domains + ['general']:
turn_dom_da.append(a[1:-1])
# get turn domain
turn_domain = turn_dom_bs
for dom in turn_dom_da:
if dom != 'booking' and dom not in turn_domain:
turn_domain.append(dom)
if not turn_domain:
turn_domain = prev_turn_domain
if len(turn_domain) == 2 and 'general' in turn_domain:
turn_domain.remove('general')
if len(turn_domain) == 2:
if len(prev_turn_domain) == 1 and prev_turn_domain[0] == turn_domain[1]:
turn_domain = turn_domain[::-1]
prev_turn_domain = copy.deepcopy(turn_domain)
prev_constraint_dict = copy.deepcopy(constraint_dict)
turn['dspn_gen'] = ' '.join(['['+d+']' for d in turn_domain])
pred_domains = {}
for d in turn_domain:
pred_domains['['+d+']'] = 1
if len(true_domains) == 1:
total_single += 1
if pred_domains == true_domains:
corr_single += 1
else:
wrong_pred.append(str(turn['turn_num']))
turn['wrong_domain'] = 'x'
else:
total_multi += 1
if pred_domains == true_domains:
corr_multi += 1
else:
wrong_pred.append(str(turn['turn_num']))
turn['wrong_domain'] = 'x'
# dialog inform metric record
dial[0]['wrong_domain'] = ' '.join(wrong_pred)
accu_single = corr_single / (total_single + 1e-10)
accu_multi = corr_multi / (total_multi + 1e-10)
return accu_single * 100, accu_multi * 100, total_multi
def dialog_state_tracking_eval(self, data, eval_dial_list = None, bspn_mode='bspn', no_name=False, no_book=False):
dials = self.pack_dial(data)
total_turn, joint_match, total_tp, total_fp, total_fn, total_acc = 0, 0, 0, 0, 0, 0
slot_appear_num, slot_correct_num = {}, {}
dial_num = 0
for dial_id in dials:
if eval_dial_list and dial_id +'.json' not in eval_dial_list:
continue
dial_num += 1
dial = dials[dial_id]
missed_jg_turn_id = []
for turn_num,turn in enumerate(dial):
if turn_num == 0:
continue
gen_cons = self._bspn_to_dict(turn[bspn_mode+'_gen'], no_name=no_name,
no_book=no_book, bspn_mode=bspn_mode)
truth_cons = self._bspn_to_dict(turn[bspn_mode], no_name=no_name,
no_book=no_book, bspn_mode=bspn_mode)
if truth_cons == gen_cons:
joint_match += 1
else:
missed_jg_turn_id.append(str(turn['turn_num']))
if eval_dial_list is None:
tp,fp,fn, acc, false_slots = self._constraint_compare(truth_cons, gen_cons,
slot_appear_num, slot_correct_num)
else:
tp,fp,fn, acc, false_slots = self._constraint_compare(truth_cons, gen_cons,)
total_tp += tp
total_fp += fp
total_fn += fn
total_acc += acc
total_turn += 1
if not no_name and not no_book:
turn['wrong_inform'] = '; '.join(false_slots) # turn inform metric record
# dialog inform metric record
if not no_name and not no_book:
dial[0]['wrong_inform'] = ' '.join(missed_jg_turn_id)
precision = total_tp / (total_tp + total_fp + 1e-10)
recall = total_tp / (total_tp + total_fn + 1e-10)
f1 = 2 * precision * recall / (precision + recall + 1e-10) * 100
accuracy = total_acc / (total_turn * len(self.all_info_slot) + 1e-10) * 100
joint_goal = joint_match / (total_turn+1e-10) * 100
return joint_goal, f1, accuracy, slot_appear_num, slot_correct_num
def aspn_eval(self, data, eval_dial_list = None):
def _get_tp_fp_fn(label_list, pred_list):
tp = len([t for t in pred_list if t in label_list])
fp = max(0, len(pred_list) - tp)
fn = max(0, len(label_list) - tp)
return tp, fp, fn
dials = self.pack_dial(data)
total_tp, total_fp, total_fn = 0, 0, 0
dial_num = 0
for dial_id in dials:
if eval_dial_list and dial_id+'.json' not in eval_dial_list:
continue
dial_num += 1
dial = dials[dial_id]
wrong_act = []
for turn_num, turn in enumerate(dial):
if turn_num == 0:
continue
if cfg.same_eval_act_f1_as_hdsa:
pred_acts, true_acts = {}, {}
for t in turn['aspn_gen']:
pred_acts[t] = 1
for t in turn['aspn']:
true_acts[t] = 1
tp, fp, fn = _get_tp_fp_fn(true_acts, pred_acts)
else:
pred_acts = self.reader.aspan_to_act_list(turn['aspn_gen'])
true_acts = self.reader.aspan_to_act_list(turn['aspn'])
tp, fp, fn = _get_tp_fp_fn(true_acts, pred_acts)
if fp + fn !=0:
wrong_act.append(str(turn['turn_num']))
turn['wrong_act'] = 'x'
total_tp += tp
total_fp += fp
total_fn += fn
dial[0]['wrong_act'] = ' '.join(wrong_act)
precision = total_tp / (total_tp + total_fp + 1e-10)
recall = total_tp / (total_tp + total_fn + 1e-10)
f1 = 2 * precision * recall / (precision + recall + 1e-10)
return f1 * 100
def multi_act_eval(self, data, eval_dial_list = None):
dials = self.pack_dial(data)
total_act_num, total_slot_num = 0, 0
dial_num = 0
turn_count = 0
for dial_id in dials:
if eval_dial_list and dial_id+'.json' not in eval_dial_list:
continue
dial_num += 1
dial = dials[dial_id]
for turn_num, turn in enumerate(dial):
if turn_num == 0:
continue
target = turn['multi_act_gen'] if self.reader.multi_acts_record is not None else turn['aspn_gen']
# diversity
act_collect, slot_collect = {}, {}
act_type_collect = {}
slot_score = 0
for act_str in target.split(' | '):
pred_acts = self.reader.aspan_to_act_list(act_str)
act_type = ''
for act in pred_acts:
d,a,s = act.split('-')
if d + '-' + a not in act_collect:
act_collect[d + '-' + a] = {s:1}
slot_score += 1
act_type += d + '-' + a + ';'
elif s not in act_collect:
act_collect[d + '-' + a][s] = 1
slot_score += 1
slot_collect[s] = 1
act_type_collect[act_type] = 1
total_act_num += len(act_collect)
total_slot_num += len(slot_collect)
turn_count += 1
total_act_num = total_act_num/(float(turn_count) + 1e-10)
total_slot_num = total_slot_num/(float(turn_count) + 1e-10)
return total_act_num, total_slot_num
def context_to_response_eval(self, data, eval_dial_list = None, same_eval_as_cambridge=False):
dials = self.pack_dial(data)
counts = {}
for req in self.requestables:
counts[req+'_total'] = 0
counts[req+'_offer'] = 0
dial_num, successes, matches = 0, 0, 0
for dial_id in dials:
if eval_dial_list and dial_id +'.json' not in eval_dial_list:
continue
dial = dials[dial_id]
reqs = {}
goal = {}
for domain in ontology.all_domains:
if self.all_data[dial_id]['goal'].get(domain):
true_goal = self.all_data[dial_id]['goal']
goal = self._parseGoal(goal, true_goal, domain)
# print(goal)
for domain in goal.keys():
reqs[domain] = goal[domain]['requestable']
# print('\n',dial_id)
success, match, stats, counts = self._evaluateGeneratedDialogue(dial, goal, reqs, counts,
same_eval_as_cambridge=same_eval_as_cambridge)
successes += success
matches += match
dial_num += 1
# for domain in gen_stats.keys():
# gen_stats[domain][0] += stats[domain][0]
# gen_stats[domain][1] += stats[domain][1]
# gen_stats[domain][2] += stats[domain][2]
# if 'SNG' in filename:
# for domain in gen_stats.keys():
# sng_gen_stats[domain][0] += stats[domain][0]
# sng_gen_stats[domain][1] += stats[domain][1]
# sng_gen_stats[domain][2] += stats[domain][2]
# self.logger.info(report)
succ_rate = successes/( float(dial_num) + 1e-10) * 100
match_rate = matches/(float(dial_num) + 1e-10) * 100
return succ_rate, match_rate, counts, dial_num
def _evaluateGeneratedDialogue(self, dialog, goal, real_requestables, counts,
soft_acc=False, same_eval_as_cambridge=False):
"""Evaluates the dialogue created by the model.
First we load the user goal of the dialogue, then for each turn
generated by the system we look for key-words.
For the Inform rate we look whether the entity was proposed.
For the Success rate we look for requestables slots"""
# for computing corpus success
#'id'
requestables = self.requestables
# CHECK IF MATCH HAPPENED
provided_requestables = {}
venue_offered = {}
domains_in_goal = []
bspans = {}
for domain in goal.keys():
venue_offered[domain] = []
provided_requestables[domain] = []
domains_in_goal.append(domain)
for t, turn in enumerate(dialog):
if t == 0:
continue
sent_t = turn['resp_gen']
# sent_t = turn['resp']
for domain in goal.keys():
# for computing success
if same_eval_as_cambridge:
# [restaurant_name], [hotel_name] instead of [value_name]
if cfg.use_true_domain_for_ctr_eval:
dom_pred = [d[1:-1] for d in turn['dspn'].split()]
else:
dom_pred = [d[1:-1] for d in turn['dspn_gen'].split()]
# else:
# raise NotImplementedError('Just use true domain label')
if domain not in dom_pred: # fail
continue
if '[value_name]' in sent_t or '[value_id]' in sent_t:
if domain in ['restaurant', 'hotel', 'attraction', 'train']:
# HERE YOU CAN PUT YOUR BELIEF STATE ESTIMATION
if cfg.enable_bspn and not cfg.use_true_bspn_for_ctr_eval and \
(cfg.bspn_mode == 'bspn' or cfg.enable_dst):
bspn = turn['bspn_gen']
else:
bspn = turn['bspn']
# bspn = turn['bspn']
constraint_dict = self.reader.bspan_to_constraint_dict(bspn)
if constraint_dict.get(domain):
venues = self.reader.db.queryJsons(domain, constraint_dict[domain], return_name=True)
else:
venues = []
# if venue has changed
if len(venue_offered[domain]) == 0 and venues:
# venue_offered[domain] = random.sample(venues, 1)
venue_offered[domain] = venues
bspans[domain] = constraint_dict[domain]
else:
# flag = False
# for ven in venues:
# if venue_offered[domain][0] == ven:
# flag = True
# break
# if not flag and venues:
flag = False
for ven in venues:
if ven not in venue_offered[domain]:
# if ven not in venue_offered[domain]:
flag = True
break
# if flag and venues:
if flag and venues: # sometimes there are no results so sample won't work
# print venues
# venue_offered[domain] = random.sample(venues, 1)
venue_offered[domain] = venues
bspans[domain] = constraint_dict[domain]
else: # not limited so we can provide one
venue_offered[domain] = '[value_name]'
# ATTENTION: assumption here - we didn't provide phone or address twice! etc
for requestable in requestables:
if requestable == 'reference':
if '[value_reference]' in sent_t:
if 'booked' in turn['pointer'] or 'ok' in turn['pointer']: # if pointer was allowing for that?
provided_requestables[domain].append('reference')
# provided_requestables[domain].append('reference')
else:
if '[value_' + requestable + ']' in sent_t:
provided_requestables[domain].append(requestable)
# if name was given in the task
for domain in goal.keys():
# if name was provided for the user, the match is being done automatically
if 'name' in goal[domain]['informable']:
venue_offered[domain] = '[value_name]'
# special domains - entity does not need to be provided
if domain in ['taxi', 'police', 'hospital']:
venue_offered[domain] = '[value_name]'
if domain == 'train':
if not venue_offered[domain] and 'id' not in goal[domain]['requestable']:
venue_offered[domain] = '[value_name]'
"""
Given all inform and requestable slots
we go through each domain from the user goal
and check whether right entity was provided and
all requestable slots were given to the user.
The dialogue is successful if that's the case for all domains.
"""
# HARD EVAL
stats = {'restaurant': [0, 0, 0], 'hotel': [0, 0, 0], 'attraction': [0, 0, 0], 'train': [0, 0, 0],
'taxi': [0, 0, 0],
'hospital': [0, 0, 0], 'police': [0, 0, 0]}
match = 0
success = 0
# MATCH
for domain in goal.keys():
match_stat = 0
if domain in ['restaurant', 'hotel', 'attraction', 'train']:
goal_venues = self.reader.db.queryJsons(domain, goal[domain]['informable'], return_name=True)
if type(venue_offered[domain]) is str and '_name' in venue_offered[domain]:
match += 1
match_stat = 1
elif len(venue_offered[domain]) > 0 and len(set(venue_offered[domain])& set(goal_venues))>0:
match += 1
match_stat = 1
else:
if '_name]' in venue_offered[domain]:
match += 1
match_stat = 1
stats[domain][0] = match_stat
stats[domain][2] = 1
if soft_acc:
match = float(match)/len(goal.keys())
else:
if match == len(goal.keys()):
match = 1.0
else:
match = 0.0
for domain in domains_in_goal:
for request in real_requestables[domain]:
counts[request+'_total'] += 1
if request in provided_requestables[domain]:
counts[request+'_offer'] += 1
# SUCCESS
if match == 1.0:
for domain in domains_in_goal:
success_stat = 0
domain_success = 0
if len(real_requestables[domain]) == 0:
success += 1
success_stat = 1
stats[domain][1] = success_stat
continue
# if values in sentences are super set of requestables
# for request in set(provided_requestables[domain]):
# if request in real_requestables[domain]:
# domain_success += 1
for request in real_requestables[domain]:
if request in provided_requestables[domain]:
domain_success += 1
# if domain_success >= len(real_requestables[domain]):
if domain_success == len(real_requestables[domain]):
success += 1
success_stat = 1
stats[domain][1] = success_stat
# final eval
if soft_acc:
success = float(success)/len(real_requestables)
else:
if success >= len(real_requestables):
success = 1
else:
success = 0
return success, match, stats, counts
def _parseGoal(self, goal, true_goal, domain):
"""Parses user goal into dictionary format."""
goal[domain] = {}
goal[domain] = {'informable': {}, 'requestable': [], 'booking': []}
if 'info' in true_goal[domain]:
if domain == 'train':
# we consider dialogues only where train had to be booked!
if 'book' in true_goal[domain]:
goal[domain]['requestable'].append('reference')
if 'reqt' in true_goal[domain]:
if 'id' in true_goal[domain]['reqt']:
goal[domain]['requestable'].append('id')
else:
if 'reqt' in true_goal[domain]:
for s in true_goal[domain]['reqt']: # addtional requests:
if s in ['phone', 'address', 'postcode', 'reference', 'id']:
# ones that can be easily delexicalized
goal[domain]['requestable'].append(s)
if 'book' in true_goal[domain]:
goal[domain]['requestable'].append("reference")
for s, v in true_goal[domain]['info'].items():
s_,v_ = clean_slot_values(domain, s,v)
if len(v_.split())>1:
v_ = ' '.join([token.text for token in self.reader.nlp(v_)]).strip()
goal[domain]["informable"][s_] = v_
if 'book' in true_goal[domain]:
goal[domain]["booking"] = true_goal[domain]['book']
return goal
if __name__ == '__main__':
pass