forked from facebookresearch/directclr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
linear_probe.py
230 lines (196 loc) · 8.75 KB
/
linear_probe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from pathlib import Path
import argparse
import json
import os
import random
import signal
import sys
import time
import urllib
from torch import nn, optim
from torchvision import models, datasets, transforms
import torch
import torchvision
parser = argparse.ArgumentParser(description='Evaluate resnet50 features on ImageNet')
parser.add_argument('--data', type=str, metavar='DIR',
help='path to dataset')
parser.add_argument('--pretrained', type=Path, metavar='FILE',
help='path to pretrained model')
parser.add_argument('--weights', default='freeze', type=str,
choices=('finetune', 'freeze'),
help='finetune or freeze resnet weights')
parser.add_argument('--train-percent', default=100, type=int,
choices=(100, 10, 1),
help='size of traing set in percent')
parser.add_argument('--workers', default=8, type=int, metavar='N',
help='number of data loader workers')
parser.add_argument('--epochs', default=100, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--batch-size', default=256, type=int, metavar='N',
help='mini-batch size')
parser.add_argument('--lr-backbone', default=0.0, type=float, metavar='LR',
help='backbone base learning rate')
parser.add_argument('--lr-classifier', default=0.1, type=float, metavar='LR',
help='classifier base learning rate')
parser.add_argument('--weight-decay', default=1e-6, type=float, metavar='W',
help='weight decay')
parser.add_argument('--print-freq', default=100, type=int, metavar='N',
help='print frequency')
def main():
args = parser.parse_args()
if args.train_percent in {1, 10}:
with open(f'{args.train_percent}percent.txt') as f:
args.train_files = f.readlines()
args.ngpus_per_node = torch.cuda.device_count()
if os.path.exists('/data/LargeData/Large/ImageNet'):
args.data = '/data/LargeData/Large/ImageNet'
elif os.path.exists('/home/LargeData/Large/ImageNet'):
args.data = '/home/LargeData/Large/ImageNet'
elif os.path.exists('/workspace/home/zhijie/ImageNet'):
args.data = '/workspace/home/zhijie/ImageNet'
# single-node distributed training
args.rank = 0
args.dist_url = f'tcp://localhost:{random.randrange(49152, 65535)}'
args.world_size = args.ngpus_per_node
torch.multiprocessing.spawn(main_worker, (args,), args.ngpus_per_node)
def main_worker(gpu, args):
args.rank += gpu
torch.distributed.init_process_group(
backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
print(' '.join(sys.argv))
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
model = models.resnet50().cuda(gpu)
state_dict = torch.load(args.pretrained, map_location='cpu')
missing_keys, unexpected_keys = model.load_state_dict(state_dict["backbone"], strict=False)
assert missing_keys == ['fc.weight', 'fc.bias'] and unexpected_keys == []
model.fc.weight.data.normal_(mean=0.0, std=0.01)
model.fc.bias.data.zero_()
if args.weights == 'freeze':
model.requires_grad_(False)
model.fc.requires_grad_(True)
classifier_parameters, model_parameters = [], []
for name, param in model.named_parameters():
if name in {'fc.weight', 'fc.bias'}:
classifier_parameters.append(param)
else:
model_parameters.append(param)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
criterion = nn.CrossEntropyLoss().cuda(gpu)
param_groups = [dict(params=classifier_parameters, lr=args.lr_classifier)]
if args.weights == 'finetune':
param_groups.append(dict(params=model_parameters, lr=args.lr_backbone))
optimizer = optim.SGD(param_groups, 0, momentum=0.9, weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.epochs)
start_epoch = 0
best_acc = argparse.Namespace(top1=0, top5=0)
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(traindir, transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
val_dataset = datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
]))
if args.train_percent in {1, 10}:
train_dataset.samples = []
for fname in args.train_files:
fname = fname.strip()
cls = fname.split('_')[0]
train_dataset.samples.append(
(os.path.join(traindir, cls, fname), train_dataset.class_to_idx[cls]))
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
kwargs = dict(batch_size=args.batch_size // args.world_size, num_workers=args.workers, pin_memory=True)
train_loader = torch.utils.data.DataLoader(train_dataset, sampler=train_sampler, **kwargs)
val_loader = torch.utils.data.DataLoader(val_dataset, **kwargs)
start_time = time.time()
for epoch in range(start_epoch, args.epochs):
# train
if args.weights == 'finetune':
model.train()
elif args.weights == 'freeze':
model.eval()
else:
assert False
train_sampler.set_epoch(epoch)
for step, (images, target) in enumerate(train_loader, start=epoch * len(train_loader)):
output = model(images.cuda(gpu, non_blocking=True))
loss = criterion(output, target.cuda(gpu, non_blocking=True))
optimizer.zero_grad()
loss.backward()
optimizer.step()
if step % args.print_freq == 0:
torch.distributed.reduce(loss.div_(args.world_size), 0)
if args.rank == 0:
pg = optimizer.param_groups
lr_classifier = pg[0]['lr']
lr_backbone = pg[1]['lr'] if len(pg) == 2 else 0
stats = dict(epoch=epoch, step=step, lr_backbone=lr_backbone,
lr_classifier=lr_classifier, loss=loss.item(),
time=int(time.time() - start_time))
print(json.dumps(stats))
scheduler.step()
# evaluate
model.eval()
if args.rank == 0:
top1 = AverageMeter('Acc@1')
top5 = AverageMeter('Acc@5')
with torch.no_grad():
for images, target in val_loader:
output = model(images.cuda(gpu, non_blocking=True))
acc1, acc5 = accuracy(output, target.cuda(gpu, non_blocking=True), topk=(1, 5))
top1.update(acc1[0].item(), images.size(0))
top5.update(acc5[0].item(), images.size(0))
best_acc.top1 = max(best_acc.top1, top1.avg)
best_acc.top5 = max(best_acc.top5, top5.avg)
stats = dict(epoch=epoch, acc1=top1.avg, acc5=top5.avg, best_acc1=best_acc.top1, best_acc5=best_acc.top5)
print(json.dumps(stats))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()