Skip to content

Files

Latest commit

 

History

History

model_selection

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Mar 14, 2022
Aug 3, 2022
Aug 3, 2022
Aug 3, 2022
Aug 3, 2022
Aug 3, 2022
Aug 3, 2022
Aug 3, 2022
Aug 3, 2022
Mar 14, 2022
Aug 3, 2022

Model Selection

Installation

Example scripts support all models in PyTorch-Image-Models. You need to install timm to use PyTorch-Image-Models.

pip install timm

Dataset

Supported Methods

Supported methods include:

Experiment and Results

Model Ranking on image classification tasks

The shell files give the scripts to ranking pre-trained models on a given dataset. For example, if you want to use LogME to calculate the transfer performance of ResNet50(ImageNet pre-trained) on Aircraft, use the following script

# Using LogME to ranking pre-trained ResNet50 on Aircraft
# Assume you have put the datasets under the path `data/cub200`, 
# or you are glad to download the datasets automatically from the Internet to this path
CUDA_VISIBLE_DEVICES=0 python logme.py ./data/FGVCAircraft -d Aircraft -a resnet50 -l fc --save_features

We use LEEP, NCE HScore and LogME to compute scores by applying 10 pre-trained models to different datasets. The correlation(Weighted kendall Tau/Pearson Correlation) between scores and fine-tuned accuracies are presented.

Model Ranking Benchmark on Aircraft

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 82.7 28.37 -4.310 0.934 -4.248
Inception V3 88.8 43.89 -4.202 0.953 -4.170
ResNet50 86.6 46.23 -4.215 0.946 -4.201
ResNet101 85.6 46.13 -4.230 0.948 -4.222
ResNet152 85.3 46.25 -4.230 0.950 -4.229
DenseNet121 85.4 31.53 -4.228 0.938 -4.215
DenseNet169 84.5 41.81 -4.245 0.943 -4.270
Densenet201 84.6 46.01 -4.206 0.942 -4.189
MobileNet V2 82.8 34.43 -4.198 0.941 -4.208
MNasNet 72.8 35.28 -4.192 0.948 -4.195
Pearson Corr - 0.688 0.127 0.582 0.173
Weighted Tau - 0.664 -0.264 0.595 0.002

Model Ranking Benchmark on Caltech101

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 91.7 75.88 -1.462 1.228 -0.665
Inception V3 94.3 93.73 -1.119 1.387 -0.560
ResNet50 91.8 91.65 -1.020 1.262 -0.616
ResNet101 93.1 92.54 -0.899 1.305 -0.603
ResNet152 93.2 92.91 -0.875 1.324 -0.605
DenseNet121 91.9 75.02 -0.979 1.172 -0.609
DenseNet169 92.5 86.37 -0.864 1.212 -0.580
Densenet201 93.4 89.90 -0.914 1.228 -0.590
MobileNet V2 89.1 75.82 -1.115 1.150 -0.693
MNasNet 91.5 77.00 -1.043 1.178 -0.690
Pearson Corr - 0.748 0.324 0.794 0.843
Weighted Tau - 0.721 0.127 0.697 0.810

Model Ranking Benchmark on CIFAR10

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 96.2 5.911 -1.385 0.293 -1.139
Inception V3 97.5 6.363 -1.259 0.349 -1.060
ResNet50 96.8 6.567 -1.010 0.388 -1.007
ResNet101 97.7 6.901 -0.829 0.463 -0.838
ResNet152 97.9 6.945 -0.838 0.469 -0.851
DenseNet121 97.2 6.210 -1.035 0.302 -1.006
DenseNet169 97.4 6.547 -0.934 0.343 -0.946
Densenet201 97.4 6.706 -0.888 0.369 -0.866
MobileNet V2 95.7 5.928 -1.100 0.291 -1.089
MNasNet 96.8 6.018 -1.066 0.304 -1.086
Pearson Corr - 0.839 0.604 0.733 0.786
Weighted Tau - 0.800 0.638 0.785 0.714

Model Ranking Benchmark on CIFAR100

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 83.2 29.33 -3.234 1.037 -2.751
Inception V3 86.6 36.47 -2.995 1.070 -2.615
ResNet50 84.5 40.20 -2.612 1.099 -2.516
ResNet101 87.0 43.80 -2.365 1.130 -2.285
ResNet152 87.6 44.19 -2.410 1.133 -2.369
DenseNet121 84.8 32.13 -2.665 1.029 -2.504
DenseNet169 85.0 37.51 -2.494 1.051 -2.418
Densenet201 86.0 39.75 -2.470 1.061 -2.305
MobileNet V2 80.8 30.36 -2.800 1.039 -2.653
MNasNet 83.9 32.05 -2.732 1.051 -2.643
Pearson Corr - 0.815 0.513 0.698 0.705
Weighted Tau - 0.775 0.659 0.790 0.654

Model Ranking Benchmark on DTD

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 73.6 34.61 -2.333 0.682 0.682
Inception V3 77.2 57.17 -2.135 0.691 0.691
ResNet50 75.2 78.26 -1.985 0.695 0.695
ResNet101 76.2 117.23 -1.974 0.689 0.689
ResNet152 75.4 32.30 -1.924 0.698 0.698
DenseNet121 74.9 35.23 -2.001 0.670 0.670
DenseNet169 74.8 43.36 -1.817 0.686 0.686
Densenet201 74.5 45.96 -1.926 0.689 0.689
MobileNet V2 72.9 37.99 -2.098 0.664 0.664
MNasNet 72.8 38.03 -2.033 0.679 0.679
Pearson Corr - 0.532 0.217 0.617 0.471
Weighted Tau - 0.416 -0.004 0.550 0.083

Model Ranking Benchmark on OxfordIIITPets

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 91.9 28.02 -1.064 0.854 -0.815
Inception V3 93.5 33.29 -0.888 1.119 -0.711
ResNet50 92.5 32.55 -0.805 0.952 -0.721
ResNet101 94.0 32.76 -0.769 0.985 -0.717
ResNet152 94.5 32.86 -0.732 1.009 -0.679
DenseNet121 92.9 27.09 -0.837 0.797 -0.753
DenseNet169 93.1 30.09 -0.779 0.829 -0.699
Densenet201 92.8 31.25 -0.810 0.860 -0.716
MobileNet V2 90.5 27.83 -0.902 0.765 -0.822
MNasNet 89.4 27.95 -0.854 0.785 -0.812
Pearson Corr - 0.427 -0.127 0.589 0.501
Weighted Tau - 0.425 -0.143 0.502 0.119

Model Ranking Benchmark on StanfordCars

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 91.0 41.47 -4.612 1.246 -4.312
Inception V3 92.3 73.68 -4.268 1.259 -4.110
ResNet50 91.7 72.94 -4.366 1.253 -4.221
ResNet101 91.7 73.98 -4.281 1.255 -4.218
ResNet152 92.0 76.17 -4.215 1.260 -4.142
DenseNet121 91.5 45.82 -4.437 1.249 -4.271
DenseNet169 91.5 63.40 -4.286 1.252 -4.175
Densenet201 91.0 70.50 -4.319 1.251 -4.151
MobileNet V2 91.0 51.12 -4.463 1.250 -4.306
MNasNet 88.5 51.91 -4.423 1.254 -4.338
Pearson Corr - 0.503 0.433 0.274 0.695
Weighted Tau - 0.638 0.703 0.654 0.750

Model Ranking Benchmark on SUN397

Model Finetuned Acc HScore LEEP LogME NCE
GoogleNet 62.0 71.35 -3.744 1.621 -3.055
Inception V3 65.7 114.21 -3.372 1.648 -2.844
ResNet50 64.7 110.39 -3.198 1.638 -2.894
ResNet101 64.8 113.63 -3.103 1.642 -2.837
ResNet152 66.0 116.51 -3.056 1.646 -2.822
DenseNet121 62.3 72.16 -3.311 1.614 -2.945
DenseNet169 63.0 95.80 -3.165 1.623 -2.903
Densenet201 64.7 103.09 -3.205 1.624 -2.896
MobileNet V2 60.5 75.90 -3.338 1.617 -2.968
MNasNet 60.7 80.91 -3.234 1.625 -2.933
Pearson Corr - 0.913 0.428 0.824 0.782
Weighted Tau - 0.918 0.581 0.748 0.873

Citation

If you use these methods in your research, please consider citing.

@inproceedings{bao_information-theoretic_2019,
	title = {An Information-Theoretic Approach to Transferability in Task Transfer Learning},
	booktitle = {ICIP},
	author = {Bao, Yajie and Li, Yang and Huang, Shao-Lun and Zhang, Lin and Zheng, Lizhong and Zamir, Amir and Guibas, Leonidas},
	year = {2019}
}

@inproceedings{nguyen_leep:_2020,
	title = {LEEP: A New Measure to Evaluate Transferability of Learned Representations},
	booktitle = {ICML},
	author = {Nguyen, Cuong and Hassner, Tal and Seeger, Matthias and Archambeau, Cedric},
	year = {2020}
}

@inproceedings{you_logme:_2021,
	title = {LogME: Practical Assessment of Pre-trained Models for Transfer Learning},
	booktitle = {ICML},
	author = {You, Kaichao and Liu, Yong and Wang, Jianmin and Long, Mingsheng},
	year = {2021}
}

@inproceedings{tran_transferability_2019,
	title = {Transferability and hardness of supervised classification tasks},
	booktitle = {ICCV},
	author = {Tran, Anh T. and Nguyen, Cuong V. and Hassner, Tal},
	year = {2019}
}