-
Notifications
You must be signed in to change notification settings - Fork 52
/
Copy pathlib.py
executable file
·41 lines (30 loc) · 1.31 KB
/
lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from easydl import *
def reverse_sigmoid(y):
return torch.log(y / (1.0 - y + 1e-10) + 1e-10)
def get_source_share_weight(domain_out, before_softmax, domain_temperature=1.0, class_temperature=10.0):
before_softmax = before_softmax / class_temperature
after_softmax = nn.Softmax(-1)(before_softmax)
domain_logit = reverse_sigmoid(domain_out)
domain_logit = domain_logit / domain_temperature
domain_out = nn.Sigmoid()(domain_logit)
entropy = torch.sum(- after_softmax * torch.log(after_softmax + 1e-10), dim=1, keepdim=True)
entropy_norm = entropy / np.log(after_softmax.size(1))
weight = entropy_norm - domain_out
weight = weight.detach()
return weight
def get_target_share_weight(domain_out, before_softmax, domain_temperature=1.0, class_temperature=10.0):
return - get_source_share_weight(domain_out, before_softmax, domain_temperature, class_temperature)
def normalize_weight(x):
min_val = x.min()
max_val = x.max()
x = (x - min_val) / (max_val - min_val)
x = x / torch.mean(x)
return x.detach()
def seed_everything(seed=1234):
import random
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
import os
os.environ['PYTHONHASHSEED'] = str(seed)