-
Notifications
You must be signed in to change notification settings - Fork 155
/
Copy pathloss.py
126 lines (108 loc) · 4.68 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Variable
def EntropyLoss(input_):
mask = input_.ge(0.000001)
mask_out = torch.masked_select(input_, mask)
entropy = -(torch.sum(mask_out * torch.log(mask_out)))
return entropy / float(input_.size(0))
def guassian_kernel(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
n_samples = int(source.size()[0])+int(target.size()[0])
total = torch.cat([source, target], dim=0)
total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))
L2_distance = ((total0-total1)**2).sum(2)
if fix_sigma:
bandwidth = fix_sigma
else:
bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)
bandwidth /= kernel_mul ** (kernel_num // 2)
bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]
kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]
return sum(kernel_val)#/len(kernel_val)
def DAN(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
batch_size = int(source.size()[0])
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
loss1 = 0
for s1 in range(batch_size):
for s2 in range(s1+1, batch_size):
t1, t2 = s1+batch_size, s2+batch_size
loss1 += kernels[s1, s2] + kernels[t1, t2]
loss1 = loss1 / float(batch_size * (batch_size - 1) / 2)
loss2 = 0
for s1 in range(batch_size):
for s2 in range(batch_size):
t1, t2 = s1+batch_size, s2+batch_size
loss2 -= kernels[s1, t2] + kernels[s2, t1]
loss2 = loss2 / float(batch_size * batch_size)
return loss1 + loss2
def DAN_Linear(source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
batch_size = int(source.size()[0])
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
# Linear version
loss = 0
for i in range(batch_size):
s1, s2 = i, (i+1)%batch_size
t1, t2 = s1+batch_size, s2+batch_size
loss += kernels[s1, s2] + kernels[t1, t2]
loss -= kernels[s1, t2] + kernels[s2, t1]
return loss / float(batch_size)
def RTN():
pass
def JAN(source_list, target_list, kernel_muls=[2.0, 2.0], kernel_nums=[5, 1], fix_sigma_list=[None, 1.68]):
batch_size = int(source_list[0].size()[0])
layer_num = len(source_list)
joint_kernels = None
for i in range(layer_num):
source = source_list[i]
target = target_list[i]
kernel_mul = kernel_muls[i]
kernel_num = kernel_nums[i]
fix_sigma = fix_sigma_list[i]
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
if joint_kernels is not None:
joint_kernels = joint_kernels * kernels
else:
joint_kernels = kernels
loss1 = 0
for s1 in range(batch_size):
for s2 in range(s1 + 1, batch_size):
t1, t2 = s1 + batch_size, s2 + batch_size
loss1 += joint_kernels[s1, s2] + joint_kernels[t1, t2]
loss1 = loss1 / float(batch_size * (batch_size - 1) / 2)
loss2 = 0
for s1 in range(batch_size):
for s2 in range(batch_size):
t1, t2 = s1 + batch_size, s2 + batch_size
loss2 -= joint_kernels[s1, t2] + joint_kernels[s2, t1]
loss2 = loss2 / float(batch_size * batch_size)
return loss1 + loss2
def JAN_Linear(source_list, target_list, kernel_muls=[2.0, 2.0], kernel_nums=[5, 1], fix_sigma_list=[None, 1.68]):
batch_size = int(source_list[0].size()[0])
layer_num = len(source_list)
joint_kernels = None
for i in range(layer_num):
source = source_list[i]
target = target_list[i]
kernel_mul = kernel_muls[i]
kernel_num = kernel_nums[i]
fix_sigma = fix_sigma_list[i]
kernels = guassian_kernel(source, target,
kernel_mul=kernel_mul, kernel_num=kernel_num, fix_sigma=fix_sigma)
if joint_kernels is not None:
joint_kernels = joint_kernels * kernels
else:
joint_kernels = kernels
# Linear version
loss = 0
for i in range(batch_size):
s1, s2 = i, (i+1)%batch_size
t1, t2 = s1+batch_size, s2+batch_size
loss += joint_kernels[s1, s2] + joint_kernels[t1, t2]
loss -= joint_kernels[s1, t2] + joint_kernels[s2, t1]
return loss / float(batch_size)
loss_dict = {"DAN":DAN, "DAN_Linear":DAN_Linear, "RTN":RTN, "JAN":JAN, "JAN_Linear":JAN_Linear}