-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcreate_dicts.py
59 lines (50 loc) · 1.65 KB
/
create_dicts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# -*- coding: utf-8 -*-
from sklearn.externals import joblib
import pickle
import numpy as np
import sys
def load_X2id(file_path):
X2id = {}
id2X = {}
with open(file_path) as f:
for line in f:
temp = line.strip().split()
id,X = temp[0],temp[1]
X2id[X] = int(id)
id2X[int(id)] = X
return X2id, id2X
def load_word2vec(file_path):
word2vec = {}
with open(file_path) as lines:
for line in lines:
split = line.split(" ")
word = split[0]
vector_strings = split[1:]
vector = [float(num) for num in vector_strings]
word2vec[word] = np.array(vector)
return word2vec
def create_id2vec(word2id,word2vec):
unk_vec = word2vec["unk"]
dim_of_vector = len(unk_vec)
num_of_tokens = int(sys.argv[6]) # len(word2id)
id2vec = np.zeros((num_of_tokens,dim_of_vector))
for word,t_id in word2id.items():
id2vec[t_id,:] = word2vec[word] if word in word2vec else unk_vec
return id2vec
def main():
print "word2id..."
word2id, id2word = load_X2id(sys.argv[1])
print "feature2id..."
feature2id, id2feature = load_X2id(sys.argv[2])
print "label2id..."
label2id, id2label = load_X2id(sys.argv[3])
print "word2vec..."
word2vec = load_word2vec(sys.argv[4])
print "id2vec..."
id2vec = create_id2vec(word2id,word2vec)
print "done!"
dicts = {"id2vec":id2vec,"word2id":word2id,"id2word":id2word,"label2id":label2id,"id2label":id2label,"feature2id":feature2id,"id2feature":id2feature}
print "dicts save..."
joblib.dump(dicts,sys.argv[5])
if(__name__=='__main__'):
main()