-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshow_result.py
251 lines (201 loc) · 8.04 KB
/
show_result.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import json
import torch
import argparse
from linear import LinearModel
from sklearn.linear_model import LinearRegression
from pymannkendall import original_test
import random
argparser = argparse.ArgumentParser()
argparser.add_argument("--category", type=str, default="preference")
args = argparser.parse_args()
# with open(f"/data/tianhao/reward_bootstrap/dataset_reg/{args.category}/rewards_cleaned.json", "r") as f:
with open(f"/data/tianhao/reward_bootstrap/data_qwen/cleaned_{args.category}.json", "r") as f:
rewards = json.load(f)
# with open(f"/data/tianhao/reward_bootstrap/rewards_cleaned.json", "r") as f:
# rewards = json.load(f)
num_responses = len(rewards[0]["layer_0"])
print(f"num_responses: {num_responses}")
layers = len(rewards[0])
for layer in range(layers):
correct = 0
total = 0
for r_dict in rewards:
r = r_dict[f"layer_{layer}"]
if num_responses == 3:
correct += float(r[0] > r[1]) + float(r[2] >= r[0]) + float(r[2] > r[1])
total += 3
elif num_responses == 2:
correct += float(r[0] > r[1])
total += 1
elif num_responses == 7:
for i in range(6):
correct += float(r[i] > r[i + 1])
total += 6
print(f"Layer {layer} test accuracy: {correct / total}")
def early_exit_aggregate(r1, r2, min=16, aggregate_num=6, can_equal=False):
assert len(r1) == len(r2)
if can_equal:
judges = [r1[i] >= r2[i] for i in range(len(r1))]
# find consecutive aggregate_num True
for i in range(min, len(judges) - aggregate_num + 1):
if sum(judges[i : i + aggregate_num]) == aggregate_num:
return True
elif sum(judges[i : i + aggregate_num]) == 0:
return False
else:
return r1[-1] >= r2[-1]
else:
judges = [r1[i] > r2[i] for i in range(len(r1))]
# find consecutive aggregate_num True
for i in range(min, len(judges) - aggregate_num + 1):
if sum(judges[i : i + aggregate_num]) == aggregate_num:
return True
elif sum(judges[i : i + aggregate_num]) == 0:
return False
else:
return r1[-1] > r2[-1]
# def JS_divergence(logp_1, logp_2):
# # logp_1 and logp_2 are log probabilities
# return 0.5 * (torch.sum(torch.exp(logp_1) * (logp_1 - logp_2)) + torch.sum(torch.exp(logp_2) * (logp_2 - logp_1)))
def JS_divergence(logp_1, logp_2):
# logp_1 and logp_2 are log probabilities
p = torch.exp(logp_1)
q = torch.exp(logp_2)
m = 0.5 * (p + q)
return 0.5 * (torch.sum(p * torch.log(p / m)) + torch.sum(q * torch.log(q / m)))
def contrastive_aggregate(r1, r2, min=10, max=70, eps=0.000, alpha=1.0, can_equal=False):
assert len(r1) == len(r2)
# take logsumexp
logits = torch.tensor([r1, r2])
logprob = (logits - torch.logsumexp(logits, dim=0)).transpose(0, 1)
largest_JS = 0
largest_JS_idx = 0
for i in range(min, max):
js = JS_divergence(logprob[i], logprob[max])
if js > largest_JS:
largest_JS = js
largest_JS_idx = i
# print(largest_JS)
contrastive_logits = logprob[max] - alpha * logprob[largest_JS_idx] if largest_JS > eps else logprob[-1]
if can_equal:
return contrastive_logits[0] >= contrastive_logits[1]
else:
return contrastive_logits[0] > contrastive_logits[1]
def mean_aggregate(r1, r2, min=10, max=32, can_equal=False):
assert len(r1) == len(r2)
logits = torch.tensor([r1, r2])
prob = torch.softmax(logits, dim=0).transpose(0, 1)[:, 0]
mean = torch.mean(prob[min:max])
if can_equal:
return mean >= 0.5
else:
return mean > 0.5
def logit_mean_aggregate(r1, r2, min=16, max=32, can_equal=False):
assert len(r1) == len(r2)
logits = torch.tensor([r1, r2])
logprob = (logits - torch.logsumexp(logits, dim=0)).transpose(0, 1)[:, 0]
mean_logprob = torch.mean(logprob[min:max]).exp()
# print(mean_logprob.item())
if can_equal:
return mean_logprob >= 0.5
else:
return mean_logprob > 0.5
def exponential_aggregate(r1, r2, min=16, max=32, alpha=0, can_equal=False):
assert len(r1) == len(r2)
logits = torch.tensor([r1, r2])
prob = torch.softmax(logits, dim=0).transpose(0, 1)[:, 0]
prob = prob[min:max]
exp_moving_avg = prob[0]
for p in prob[1:]:
exp_moving_avg = alpha * exp_moving_avg + (1 - alpha) * p
if can_equal:
return exp_moving_avg >= 0.5
else:
return exp_moving_avg > 0.5
def logit_exponential_aggregate(r1, r2, min=16, max=32, alpha=0, can_equal=False):
assert len(r1) == len(r2)
logits = torch.tensor([r1, r2])
logprob = (logits - torch.logsumexp(logits, dim=0)).transpose(0, 1)[:, 0]
logprob = logprob[min:max]
exp_moving_avg = logprob[0]
for p in logprob[1:]:
exp_moving_avg = alpha * exp_moving_avg + (1 - alpha) * p
if can_equal:
return exp_moving_avg.exp() >= 0.5
else:
return exp_moving_avg.exp() > 0.5
def linear_regression_aggregate(r1, r2, min=10, max=80, can_equal=False):
logits = torch.tensor([r1, r2])
prob = torch.softmax(logits, dim=0).transpose(0, 1)[:, 0]
prob = prob[min:max]
model = LinearRegression()
time = torch.arange(min, max).reshape(-1, 1).cpu().detach().numpy()
model.fit(time, prob.cpu().detach().numpy().reshape(-1, 1))
# Get the slope of the regression line
slope = model.coef_[0][0]
# print(slope)
# Determine the trend based on the slope
if can_equal:
return slope >= 0
else:
return slope > 0
def majority_vote(r1, r2, min=28, can_equal=False):
assert len(r1) == len(r2)
if can_equal:
judges = [r1[i] >= r2[i] for i in range(min, len(r1))]
if sum(judges) >= len(judges) / 2:
return True
else:
return False
else:
judges = [r1[i] > r2[i] for i in range(min, len(r1))]
if sum(judges) >= len(judges) / 2:
return True
else:
return False
def mann_kendall_aggregate(r1, r2, min=30, max=78, can_equal=False):
logits = torch.tensor([r1, r2])
prob = torch.softmax(logits, dim=0).transpose(0, 1)[:, 0]
prob = prob[min:max].tolist()
result = original_test(prob)
# print(result)
# result.slope
trend = result.slope
# if trend == 0 and not can_equal:
# trend = random.choice([-1, 1])
# Determine the trend based on the test result
if can_equal:
return trend >= 0
else:
return trend > 0
criteria = [linear_regression_aggregate, mann_kendall_aggregate, contrastive_aggregate, early_exit_aggregate]
for cri in criteria:
correct = 0
total = 0
for r_dict in rewards:
if num_responses == 3:
r0 = [r_dict[f"layer_{layer}"][0] for layer in range(len(r_dict))]
r1 = [r_dict[f"layer_{layer}"][1] for layer in range(len(r_dict))]
r2 = [r_dict[f"layer_{layer}"][2] for layer in range(len(r_dict))]
correct += float(cri(r0, r1)) + float(cri(r2, r1)) + float(cri(r2, r0, can_equal=True))
total += 3
elif num_responses == 2:
r0 = [r_dict[f"layer_{layer}"][0] for layer in range(len(r_dict))]
r1 = [r_dict[f"layer_{layer}"][1] for layer in range(len(r_dict))]
correct += float(cri(r0, r1))
total += 1
print(f"Layer {layer} early exit {str(cri)} test accuracy: {correct / total}")
# model = LinearModel(61)
# model.load("linear_model_ckpt_3000.pth")
# model = model.to("cuda")
# for idx, weight in enumerate((model.layer.weight * model.input_batch_norm.weight)[0]):
# print(f"layer {idx} weight: {weight.item():.5f}")
# def get_batch(dict):
# num_layers = len(dict)
# batch = torch.tensor([dict[f"layer_{i}"] for i in range(num_layers)])
# batch = batch.transpose(0, 1)
# return batch
# def get_multi_batch(ls):
# return torch.cat([get_batch(d) for d in ls], dim=0)
# test_set = get_multi_batch(rewards)
# print("Self aggregated accuracy:", model.test_accu(test_set, num_responses=num_responses).item())