-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisualize.py
144 lines (123 loc) · 4.58 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import json
import torch
import argparse
from linear import LinearModel
import matplotlib.pyplot as plt
argparser = argparse.ArgumentParser()
argparser.add_argument("--num_responses", type=int, default=2)
argparser.add_argument("--category", type=str, default="preference")
argparser.add_argument("--mode", type=str, default="fail")
args = argparser.parse_args()
with open(f"/data/tianhao/reward_bootstrap/dataset_reg/{args.category}/rewards_cleaned.json", "r") as f:
rewards = json.load(f)
# with open(f"/data/tianhao/reward_bootstrap/rewards_cleaned.json", "r") as f:
# rewards = json.load(f)
num_responses = args.num_responses
print(len(rewards))
layers = len(rewards[0])
for layer in range(layers):
correct = 0
total = 0
for r_dict in rewards:
r = r_dict[f"layer_{layer}"]
if num_responses == 3:
correct += float(r[0] > r[1]) + float(r[2] >= r[0]) + float(r[2] > r[1])
total += 3
elif num_responses == 2:
correct += float(r[0] > r[1])
total += 1
elif num_responses == 7:
for i in range(6):
correct += float(r[i] > r[i + 1])
total += 6
print(f"Layer {layer} test accuracy: {correct / total}")
def early_exit_aggregate(r1, r2, min=35, aggregate_num=10, can_equal=False):
assert len(r1) == len(r2)
if can_equal:
judges = [r1[i] >= r2[i] for i in range(len(r1))]
# find consecutive aggregate_num True
for i in range(min, len(judges) - aggregate_num + 1):
if sum(judges[i : i + aggregate_num]) == aggregate_num:
return True
elif sum(judges[i : i + aggregate_num]) == 0:
return False
else:
return r1[-1] >= r2[-1]
else:
judges = [r1[i] > r2[i] for i in range(len(r1))]
# find consecutive aggregate_num True
for i in range(min, len(judges) - aggregate_num + 1):
if sum(judges[i : i + aggregate_num]) == aggregate_num:
return True
elif sum(judges[i : i + aggregate_num]) == 0:
return False
else:
return r1[-1] > r2[-1]
def JS_divergence(logp_1, logp_2):
# logp_1 and logp_2 are log probabilities
p = torch.exp(logp_1)
q = torch.exp(logp_2)
m = 0.5 * (p + q)
return 0.5 * (torch.sum(p * torch.log(p / m)) + torch.sum(q * torch.log(q / m)))
def contrastive_aggregate(r1, r2, min=20, eps=0, alpha=0.4, can_equal=False):
assert len(r1) == len(r2)
# take logsumexp
logits = torch.tensor([r1, r2])
logprob = (logits - torch.logsumexp(logits, dim=0)).transpose(0, 1)
largest_JS = 0
largest_JS_idx = 0
for i in range(min, len(logprob)):
js = JS_divergence(logprob[i], logprob[-1])
if js > largest_JS:
largest_JS = js
largest_JS_idx = i
# print(largest_JS)
contrastive_logits = logprob[-1] - alpha * logprob[largest_JS_idx] if largest_JS > eps else logprob[-1]
if can_equal:
return contrastive_logits[0] >= contrastive_logits[1]
else:
return contrastive_logits[0] > contrastive_logits[1]
def majority_vote(r1, r2, min=57, can_equal=False):
assert len(r1) == len(r2)
if can_equal:
judges = [r1[i] >= r2[i] for i in range(min, len(r1))]
if sum(judges) >= len(judges) / 2:
return True
else:
return False
else:
judges = [r1[i] > r2[i] for i in range(min, len(r1))]
if sum(judges) >= len(judges) / 2:
return True
else:
return False
# criteria = [early_exit_aggregate, majority_vote, contrastive_aggregate]
def to_prob(r0,r1):
r0 = torch.tensor(r0)
r1 = torch.tensor(r1)
# print(r0)
logits = torch.stack([r0, r1])
prob = torch.softmax(logits, dim=0)
return prob[0]
def plot_prob(r0,r1, mode="fail"):
p = to_prob(r0,r1)
if mode == "fail":
if p[-1] < 0.5:
plt.plot(p)
else:
plt.plot(p)
plt.figure()
mode = args.mode
for r_dict in rewards[120:130]:
if num_responses == 3:
r0 = [r_dict[f"layer_{layer}"][0] for layer in range(len(r_dict))]
r1 = [r_dict[f"layer_{layer}"][1] for layer in range(len(r_dict))]
r2 = [r_dict[f"layer_{layer}"][2] for layer in range(len(r_dict))]
plot_prob(r0,r1, mode)
plot_prob(r2,r1, mode)
plot_prob(r2,r0, mode)
elif num_responses == 2:
r0 = [r_dict[f"layer_{layer}"][0] for layer in range(len(r_dict))]
r1 = [r_dict[f"layer_{layer}"][1] for layer in range(len(r_dict))]
plot_prob(r0,r1, mode)
plt.savefig("prob.png")