forked from iQua/flsim
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathclient.py
129 lines (98 loc) · 3.73 KB
/
client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import logging
import torch
import torch.nn as nn
import torch.optim as optim
class Client(object):
"""Simulated federated learning client."""
def __init__(self, client_id, case_name):
self.client_id = client_id
self.report = Report(self)
self.case_name = case_name
self.pref = '-1'
def __repr__(self):
return 'Client #{}: {} samples in labels: {}'.format(
self.client_id, len(self.data), set([label for _, label in self.data]))
# Set non-IID data configurations
def set_bias(self, pref, bias):
self.pref = pref
self.bias = bias
def set_shard(self, shard):
self.shard = shard
# Server interactions
def download(self, argv):
# Download from the server.
try:
return argv.copy()
except:
return argv
def upload(self, argv):
# Upload to the server
try:
return argv.copy()
except:
return argv
# Federated learning phases
def set_data(self, data, config):
# Extract from config
do_test = self.do_test = config.clients.do_test
test_partition = self.test_partition = config.clients.test_partition
# Download data
self.data = self.download(data)
# Extract trainset, testset (if applicable)
data = self.data
if do_test: # Partition for testset if applicable
self.trainset = data[:int(len(data) * (1 - test_partition))]
self.testset = data[int(len(data) * (1 - test_partition)):]
else:
self.trainset = data
def configure(self, config):
import fl_model # pylint: disable=import-error
# Extract from config
model_path = self.model_path = config.paths.model
# Download from server
config = self.download(config)
# Extract machine learning task from config
self.task = config.fl.task
self.epochs = config.fl.epochs
self.batch_size = config.fl.batch_size
# Download most recent global model
path = model_path + '/global_' + config.paths.case_name
self.model = fl_model.Net()
self.model.load_state_dict(torch.load(path))
self.model.eval()
# Create optimizer
self.optimizer = fl_model.get_optimizer(self.model)
def run(self):
# Perform federated learning task
{"train": self.train()}[self.task]
def get_report(self):
# Report results to server.
return self.upload(self.report)
# Machine learning tasks
def train(self):
import fl_model # pylint: disable=import-error
logging.info('Training on client #{}'.format(self.client_id))
# Perform model training
trainloader = fl_model.get_trainloader(self.trainset, self.batch_size)
fl_model.train(self.model, trainloader,
self.optimizer, self.epochs)
# Extract model weights and biases
weights = fl_model.extract_weights(self.model)
# Generate report for server
#self.report = Report(self)
self.report.set_num_samples(len(self.data))
self.report.weights = weights
self.report.pref = int(self.pref.split(' - ')[0])
# Perform model testing if applicable
if self.do_test:
testloader = fl_model.get_testloader(self.testset, 1000)
self.report.accuracy = fl_model.test(self.model, testloader)
def test(self):
# Perform model testing
raise NotImplementedError
class Report(object):
"""Federated learning client report."""
def __init__(self, client):
self.client_id = client.client_id
def set_num_samples(self, num_samples):
self.num_samples = num_samples