forked from mit-han-lab/once-for-all
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_specialized_net.py
196 lines (183 loc) · 6.74 KB
/
eval_specialized_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Once for All: Train One Network and Specialize it for Efficient Deployment
# Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, Song Han
# International Conference on Learning Representations (ICLR), 2020.
import os
import os.path as osp
import argparse
import math
from tqdm import tqdm
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torch.utils.data
from torchvision import transforms, datasets
from ofa.utils import AverageMeter, accuracy
from ofa.model_zoo import ofa_specialized
specialized_network_list = [
################# FLOPs #################
'flops@595M_top1@80.0_finetune@75',
'flops@482M_top1@79.6_finetune@75',
'flops@389M_top1@79.1_finetune@75',
################# ResNet50 Design Space #################
'resnet50D_MAC@4.1B_top1@79.8',
'resnet50D_MAC@3.7B_top1@79.7',
'resnet50D_MAC@3.0B_top1@79.3',
'resnet50D_MAC@2.4B_top1@79.0',
'resnet50D_MAC@1.8B_top1@78.3',
'resnet50D_MAC@1.2B_top1@77.1_finetune@25',
'resnet50D_MAC@0.9B_top1@76.3_finetune@25',
'resnet50D_MAC@0.6B_top1@75.0_finetune@25',
################# Google pixel1 #################
'pixel1_lat@143ms_top1@80.1_finetune@75',
'pixel1_lat@132ms_top1@79.8_finetune@75',
'pixel1_lat@79ms_top1@78.7_finetune@75',
'pixel1_lat@58ms_top1@76.9_finetune@75',
'pixel1_lat@40ms_top1@74.9_finetune@25',
'pixel1_lat@28ms_top1@73.3_finetune@25',
'pixel1_lat@20ms_top1@71.4_finetune@25',
################# Google pixel2 #################
'pixel2_lat@62ms_top1@75.8_finetune@25',
'pixel2_lat@50ms_top1@74.7_finetune@25',
'pixel2_lat@35ms_top1@73.4_finetune@25',
'pixel2_lat@25ms_top1@71.5_finetune@25',
################# Samsung note10 #################
'note10_lat@64ms_top1@80.2_finetune@75',
'note10_lat@50ms_top1@79.7_finetune@75',
'note10_lat@41ms_top1@79.3_finetune@75',
'note10_lat@30ms_top1@78.4_finetune@75',
'note10_lat@22ms_top1@76.6_finetune@25',
'note10_lat@16ms_top1@75.5_finetune@25',
'note10_lat@11ms_top1@73.6_finetune@25',
'note10_lat@8ms_top1@71.4_finetune@25',
################# Samsung note8 #################
'note8_lat@65ms_top1@76.1_finetune@25',
'note8_lat@49ms_top1@74.9_finetune@25',
'note8_lat@31ms_top1@72.8_finetune@25',
'note8_lat@22ms_top1@70.4_finetune@25',
################# Samsung S7 Edge #################
's7edge_lat@88ms_top1@76.3_finetune@25',
's7edge_lat@58ms_top1@74.7_finetune@25',
's7edge_lat@41ms_top1@73.1_finetune@25',
's7edge_lat@29ms_top1@70.5_finetune@25',
################# LG G8 #################
'LG-G8_lat@24ms_top1@76.4_finetune@25',
'LG-G8_lat@16ms_top1@74.7_finetune@25',
'LG-G8_lat@11ms_top1@73.0_finetune@25',
'LG-G8_lat@8ms_top1@71.1_finetune@25',
################# 1080ti GPU (Batch Size 64) #################
'1080ti_gpu64@27ms_top1@76.4_finetune@25',
'1080ti_gpu64@22ms_top1@75.3_finetune@25',
'1080ti_gpu64@15ms_top1@73.8_finetune@25',
'1080ti_gpu64@12ms_top1@72.6_finetune@25',
################# V100 GPU (Batch Size 64) #################
'v100_gpu64@11ms_top1@76.1_finetune@25',
'v100_gpu64@9ms_top1@75.3_finetune@25',
'v100_gpu64@6ms_top1@73.0_finetune@25',
'v100_gpu64@5ms_top1@71.6_finetune@25',
################# Jetson TX2 GPU (Batch Size 16) #################
'tx2_gpu16@96ms_top1@75.8_finetune@25',
'tx2_gpu16@80ms_top1@75.4_finetune@25',
'tx2_gpu16@47ms_top1@72.9_finetune@25',
'tx2_gpu16@35ms_top1@70.3_finetune@25',
################# Intel Xeon CPU with MKL-DNN (Batch Size 1) #################
'cpu_lat@17ms_top1@75.7_finetune@25',
'cpu_lat@15ms_top1@74.6_finetune@25',
'cpu_lat@11ms_top1@72.0_finetune@25',
'cpu_lat@10ms_top1@71.1_finetune@25',
]
parser = argparse.ArgumentParser()
parser.add_argument(
'-p',
'--path',
help='The path of imagenet',
type=str,
default='/dataset/imagenet')
parser.add_argument(
'-g',
'--gpu',
help='The gpu(s) to use',
type=str,
default='all')
parser.add_argument(
'-b',
'--batch-size',
help='The batch on every device for validation',
type=int,
default=100)
parser.add_argument(
'-j',
'--workers',
help='Number of workers',
type=int,
default=20)
parser.add_argument(
'-n',
'--net',
metavar='NET',
default='pixel1_lat@143ms_top1@80.1_finetune@75',
choices=specialized_network_list,
help='OFA specialized networks: ' +
' | '.join(specialized_network_list) +
' (default: pixel1_lat@143ms_top1@80.1_finetune@75)')
args = parser.parse_args()
if args.gpu == 'all':
device_list = range(torch.cuda.device_count())
args.gpu = ','.join(str(_) for _ in device_list)
else:
device_list = [int(_) for _ in args.gpu.split(',')]
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
net, image_size = ofa_specialized(net_id=args.net, pretrained=True)
args.batch_size = args.batch_size * max(len(device_list), 1)
data_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(
osp.join(
args.path,
'val'),
transforms.Compose(
[
transforms.Resize(int(math.ceil(image_size / 0.875))),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(
mean=[
0.485,
0.456,
0.406],
std=[
0.229,
0.224,
0.225]),
])),
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True,
drop_last=False,
)
net = torch.nn.DataParallel(net).cuda()
cudnn.benchmark = True
criterion = nn.CrossEntropyLoss().cuda()
net.eval()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
with torch.no_grad():
with tqdm(total=len(data_loader), desc='Validate') as t:
for i, (images, labels) in enumerate(data_loader):
images, labels = images.cuda(), labels.cuda()
# compute output
output = net(images)
loss = criterion(output, labels)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, labels, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0].item(), images.size(0))
top5.update(acc5[0].item(), images.size(0))
t.set_postfix({
'loss': losses.avg,
'top1': top1.avg,
'top5': top5.avg,
'img_size': images.size(2),
})
t.update(1)
print('Test OFA specialized net <%s> with image size %d:' % (args.net, image_size))
print('Results: loss=%.5f,\t top1=%.1f,\t top5=%.1f' % (losses.avg, top1.avg, top5.avg))