Skip to content

Commit 7eef7f2

Browse files
authored
[CI] Add linear attention examples to CI (#552)
* Add linear attention examples. * Add license * Remove comments * Run yapf and ruff
1 parent 5faaaca commit 7eef7f2

File tree

2 files changed

+304
-0
lines changed

2 files changed

+304
-0
lines changed
Lines changed: 180 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,180 @@
1+
# Copyright (c) Tile-AI Corporation.
2+
# Licensed under the MIT License.
3+
4+
import torch
5+
import tilelang as tl
6+
import tilelang.language as T
7+
from tilelang.profiler import do_bench
8+
9+
import argparse
10+
from fla.ops.linear_attn import fused_chunk_linear_attn # We compare with FLA
11+
12+
13+
def chunk_linear_attn_bwd_kernel(
14+
B,
15+
S,
16+
H,
17+
DK,
18+
DV,
19+
dtype: str = 'float16',
20+
scale: float = None,
21+
) -> torch.Tensor:
22+
23+
if scale is None:
24+
scale = DK**-0.5
25+
accum_dtype = 'float'
26+
27+
chunk_size = 64
28+
BK = BV = 64
29+
assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0
30+
NK = tl.cdiv(DK, BK)
31+
NV = tl.cdiv(DV, BV)
32+
NT = tl.cdiv(S, chunk_size)
33+
34+
@T.prim_func
35+
def main(
36+
Q: T.Tensor([B, S, H, DK], dtype),
37+
K: T.Tensor([B, S, H, DK], dtype),
38+
V: T.Tensor([B, S, H, DV], dtype),
39+
dO: T.Tensor([B, S, H, DV], dtype),
40+
dQ: T.Tensor([NV, B, S, H, DK], dtype),
41+
dK: T.Tensor([NV, B, S, H, DK], dtype),
42+
dV: T.Tensor([NK, B, S, H, DV], dtype),
43+
):
44+
with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh):
45+
i_b = i_bh // H
46+
i_h = i_bh % H
47+
48+
ds = T.alloc_fragment([chunk_size, chunk_size], accum_dtype)
49+
ds_shared = T.alloc_shared([chunk_size, chunk_size], dtype)
50+
dq = T.alloc_fragment([chunk_size, BK], accum_dtype)
51+
dk = T.alloc_fragment([chunk_size, BK], accum_dtype)
52+
dv = T.alloc_fragment([chunk_size, BV], accum_dtype)
53+
q = T.alloc_shared([chunk_size, BK], dtype)
54+
k = T.alloc_shared([chunk_size, BK], dtype)
55+
v = T.alloc_shared([chunk_size, BV], dtype)
56+
do = T.alloc_shared([chunk_size, BV], dtype)
57+
h = T.alloc_fragment([BV, BK], accum_dtype)
58+
h_shared = T.alloc_shared([BV, BK], dtype)
59+
dh = T.alloc_fragment([BK, BV], accum_dtype)
60+
dh_shared = T.alloc_shared([BK, BV], dtype)
61+
T.clear(h)
62+
T.clear(dh)
63+
64+
T.annotate_layout({
65+
ds_shared: tl.layout.make_swizzled_layout(ds_shared),
66+
q: tl.layout.make_swizzled_layout(q),
67+
k: tl.layout.make_swizzled_layout(k),
68+
v: tl.layout.make_swizzled_layout(v),
69+
do: tl.layout.make_swizzled_layout(do),
70+
h_shared: tl.layout.make_swizzled_layout(h_shared),
71+
dh_shared: tl.layout.make_swizzled_layout(dh_shared)
72+
})
73+
74+
# Calculate dQ
75+
for i in T.Pipelined(0, NT, num_stages=1):
76+
T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k)
77+
T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v)
78+
T.copy(dO[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV],
79+
do)
80+
81+
T.gemm(do, v, ds, transpose_B=True, clear_accum=True)
82+
for row, col in T.Parallel(chunk_size, chunk_size):
83+
ds_shared[row, col] = T.if_then_else(row >= col, ds[row, col], 0)
84+
85+
T.gemm(ds_shared, k, dq, clear_accum=True)
86+
T.copy(h, h_shared)
87+
T.gemm(do, h_shared, dq)
88+
T.gemm(v, k, h, transpose_A=True)
89+
for row, col in T.Parallel(chunk_size, BK):
90+
dq[row, col] *= scale
91+
T.copy(
92+
dq, dQ[i_v, i_b, i * chunk_size:(i + 1) * chunk_size, i_h,
93+
i_k * BK:(i_k + 1) * BK])
94+
95+
# Calculate dK, dV (reversely)
96+
for i in T.Pipelined(1, NT + 1, num_stages=1):
97+
start = NT - i
98+
for row, col in T.Parallel(chunk_size, BK):
99+
q[row, col] = Q[i_b, start * chunk_size + row, i_h, i_k * BK + col] * scale
100+
T.copy(
101+
K[i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
102+
i_k * BK:(i_k + 1) * BK], k)
103+
T.copy(
104+
V[i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
105+
i_v * BV:(i_v + 1) * BV], v)
106+
T.copy(
107+
dO[i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
108+
i_v * BV:(i_v + 1) * BV], do)
109+
T.copy(dh, dh_shared)
110+
111+
# Calculate dk
112+
T.gemm(
113+
v, do, ds, transpose_B=True, clear_accum=True
114+
) # ds here actually means `s`, but we simply reuse the buffer `ds`
115+
for row, col in T.Parallel(chunk_size, chunk_size):
116+
ds_shared[row, col] = T.if_then_else(row <= col, ds[row, col], 0)
117+
T.gemm(ds_shared, q, dk, clear_accum=True)
118+
T.gemm(v, dh_shared, dk, transpose_B=True)
119+
120+
# Calculate dv
121+
T.gemm(k, q, ds, transpose_B=True, clear_accum=True)
122+
for row, col in T.Parallel(chunk_size, chunk_size):
123+
ds_shared[row, col] = T.if_then_else(row <= col, ds[row, col], 0)
124+
T.gemm(ds_shared, do, dv, clear_accum=True)
125+
T.gemm(k, dh_shared, dv)
126+
127+
# Update dh
128+
T.gemm(q, do, dh, transpose_A=True)
129+
130+
T.copy(
131+
dk, dK[i_v, i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
132+
i_k * BK:(i_k + 1) * BK])
133+
T.copy(
134+
dv, dV[i_k, i_b, start * chunk_size:(start + 1) * chunk_size, i_h,
135+
i_v * BV:(i_v + 1) * BV])
136+
137+
return main
138+
139+
140+
def postprocess(dQ, dK, dV):
141+
dQ = dQ[0] if dQ.size(0) == 1 else dQ.sum(0)
142+
dK = dK[0] if dK.size(0) == 1 else dK.sum(0)
143+
dV = dV[0] if dV.size(0) == 1 else dV.sum(0)
144+
return dQ, dK, dV
145+
146+
147+
def main():
148+
parser = argparse.ArgumentParser()
149+
parser.add_argument('--B', type=int, default=8, help='Batch size')
150+
parser.add_argument('--S', type=int, default=2048, help='Seq len')
151+
parser.add_argument('--H', type=int, default=64, help='Num heads')
152+
parser.add_argument('--D', type=int, default=256, help='Head dim')
153+
args = parser.parse_args()
154+
B, S, H, D = args.B, args.S, args.H, args.D
155+
156+
q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16, requires_grad=True)
157+
k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16, requires_grad=True)
158+
v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16, requires_grad=True)
159+
do = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
160+
161+
fn = chunk_linear_attn_bwd_kernel(B, S, H, D, D)
162+
kernel = tl.compile(fn, out_idx=[4, 5, 6], target='cuda')
163+
dq, dk, dv = postprocess(*kernel(q, k, v, do))
164+
o_ref, h_ref = fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)
165+
o_ref.backward(do, retain_graph=True)
166+
if torch.allclose(dq, q.grad) and torch.allclose(dk, k.grad) and torch.allclose(dv, v.grad):
167+
print('Passed all tests!✅')
168+
else:
169+
print('Failed some tests!❌')
170+
t1 = do_bench(lambda: o_ref.backward(do, retain_graph=True), warmup=25, rep=100)
171+
q.grad = k.grad = v.grad = None
172+
o_ref, h_ref = fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)
173+
t2 = do_bench(lambda: postprocess(*kernel(q, k, v, do)), warmup=25, rep=100)
174+
print(f'Triton latency: {t1:.3f} ms')
175+
print(f'TileLang latency: {t2:.3f} ms')
176+
print(f'Speedup: {t1/t2:.3f}x')
177+
178+
179+
if __name__ == '__main__':
180+
main()
Lines changed: 124 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,124 @@
1+
# Copyright (c) Tile-AI Corporation.
2+
# Licensed under the MIT License.
3+
4+
import torch
5+
import tilelang as tl
6+
import tilelang.language as T
7+
from tilelang.profiler import do_bench
8+
9+
import argparse
10+
from fla.ops.linear_attn import fused_chunk_linear_attn # We compare with FLA
11+
12+
13+
def chunk_linear_attn_fwd_kernel(
14+
B,
15+
S,
16+
H,
17+
DK,
18+
DV,
19+
dtype: str = 'float16',
20+
scale: float = None,
21+
) -> torch.Tensor:
22+
23+
if scale is None:
24+
scale = DK**-0.5
25+
accum_dtype = 'float'
26+
27+
chunk_size = 64
28+
BK = BV = 64
29+
assert S % chunk_size == 0 and DK % BK == 0 and DV % BV == 0
30+
NK = tl.cdiv(DK, BK)
31+
NV = tl.cdiv(DV, BV)
32+
NT = tl.cdiv(S, chunk_size)
33+
34+
@T.prim_func
35+
def main(Q: T.Tensor([B, S, H, DK], dtype), K: T.Tensor([B, S, H, DK], dtype),
36+
V: T.Tensor([B, S, H, DV], dtype), O: T.Tensor([NK, B, S, H, DV], dtype),
37+
final_state: T.Tensor([B, H, DK, DV], accum_dtype)):
38+
with T.Kernel(NV, NK, B * H) as (i_v, i_k, i_bh):
39+
i_b = i_bh // H
40+
i_h = i_bh % H
41+
42+
q = T.alloc_shared([chunk_size, BK], dtype)
43+
k = T.alloc_shared([chunk_size, BK], dtype)
44+
v = T.alloc_shared([chunk_size, BV], dtype)
45+
h = T.alloc_fragment([BK, BV], accum_dtype)
46+
h_shared = T.alloc_shared([BK, BV], dtype)
47+
s = T.alloc_fragment([chunk_size, chunk_size], accum_dtype)
48+
s_shared = T.alloc_shared([chunk_size, chunk_size], dtype)
49+
o = T.alloc_fragment([chunk_size, BV], accum_dtype)
50+
T.clear(h)
51+
52+
T.annotate_layout({
53+
q: tl.layout.make_swizzled_layout(q),
54+
k: tl.layout.make_swizzled_layout(k),
55+
v: tl.layout.make_swizzled_layout(v),
56+
h_shared: tl.layout.make_swizzled_layout(h_shared),
57+
s_shared: tl.layout.make_swizzled_layout(s_shared),
58+
})
59+
T.use_swizzle(8)
60+
61+
for i in T.Pipelined(0, NT, num_stages=1):
62+
for row, col in T.Parallel(chunk_size, BK):
63+
q[row, col] = Q[i_b, i * chunk_size + row, i_h, i_k * BK + col] * scale
64+
T.copy(K[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_k * BK:(i_k + 1) * BK], k)
65+
T.copy(V[i_b, i * chunk_size:(i + 1) * chunk_size, i_h, i_v * BV:(i_v + 1) * BV], v)
66+
67+
T.gemm(q, k, s, clear_accum=True, transpose_B=True)
68+
for row, col in T.Parallel(chunk_size, chunk_size):
69+
s_shared[row, col] = T.if_then_else(row >= col, s[row, col], 0)
70+
71+
T.gemm(s_shared, v, o, clear_accum=True)
72+
T.copy(h, h_shared)
73+
T.gemm(q, h_shared, o)
74+
T.gemm(k, v, h, transpose_A=True)
75+
T.copy(
76+
o, O[i_k, i_b, i * chunk_size:(i + 1) * chunk_size, i_h,
77+
i_v * BV:(i_v + 1) * BV])
78+
79+
# Output final state
80+
T.copy(h, final_state[i_b, i_h, i_k * BK:(i_k + 1) * BK, i_v * BV:(i_v + 1) * BV])
81+
82+
return main
83+
84+
85+
def postprocess(o, h):
86+
o = o[0] if o.size(0) == 1 else o.sum(0)
87+
return o, h
88+
89+
90+
def main():
91+
parser = argparse.ArgumentParser()
92+
parser.add_argument('--B', type=int, default=8, help='Batch size')
93+
parser.add_argument('--S', type=int, default=2048, help='Seq len')
94+
parser.add_argument('--H', type=int, default=64, help='Num heads')
95+
parser.add_argument('--D', type=int, default=256, help='Head dim')
96+
args = parser.parse_args()
97+
B, S, H, D = args.B, args.S, args.H, args.D
98+
99+
q = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
100+
k = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
101+
v = torch.randn((B, S, H, D), device='cuda', dtype=torch.float16)
102+
103+
fn = chunk_linear_attn_fwd_kernel(B, S, H, D, D)
104+
kernel = tl.compile(fn, out_idx=[3, 4], target='cuda')
105+
o, h = postprocess(*kernel(q, k, v))
106+
o_ref, h_ref = fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)
107+
108+
if torch.allclose(o, o_ref) and torch.allclose(h, h_ref):
109+
print('Passed all tests!✅')
110+
else:
111+
print('Failed some tests!❌')
112+
113+
t1 = do_bench(
114+
lambda: fused_chunk_linear_attn(q, k, v, output_final_state=True, normalize=False)[0],
115+
warmup=25,
116+
rep=100)
117+
t2 = do_bench(lambda: kernel(q, k, v)[0].sum(0), warmup=25, rep=100)
118+
print(f'Triton latency: {t1:.3f} ms')
119+
print(f'TileLang latency: {t2:.3f} ms')
120+
print(f'Speedup: {t1/t2:.3f}x')
121+
122+
123+
if __name__ == '__main__':
124+
main()

0 commit comments

Comments
 (0)