Skip to content

Commit f691e79

Browse files
committed
2 parents 8b7652e + b31de0c commit f691e79

9 files changed

+431
-18
lines changed

examples/flash_attention/example_gqa_bwd.py

Lines changed: 16 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -154,6 +154,8 @@ def flashattn_bwd(batch, heads, seq_len, dim_qk, dim_v, is_causal, block_M, bloc
154154
q_shape = [batch, seq_len, heads, dim_qk]
155155
k_shape = [batch, seq_len, head_kv, dim_qk]
156156
v_shape = [batch, seq_len, head_kv, dim_v]
157+
dk_shape = [groups, batch, seq_len, head_kv, dim_qk] # sum after kernel
158+
dv_shape = [groups, batch, seq_len, head_kv, dim_v] # sum after kernel
157159
dtype = "float16"
158160
accum_dtype = "float"
159161

@@ -166,8 +168,8 @@ def flash_bwd(
166168
lse: T.Tensor([batch, heads, seq_len], accum_dtype), # type: ignore
167169
Delta: T.Tensor([batch, heads, seq_len], accum_dtype), # type: ignore
168170
dQ: T.Tensor(q_shape, accum_dtype), # type: ignore
169-
dK: T.Tensor(k_shape, dtype), # type: ignore
170-
dV: T.Tensor(v_shape, dtype), # type: ignore
171+
dK: T.Tensor(dk_shape, dtype), # type: ignore
172+
dV: T.Tensor(dv_shape, dtype), # type: ignore
171173
):
172174
with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=128) as (bx, by, bz):
173175
K_shared = T.alloc_shared([block_M, dim_qk], dtype)
@@ -184,8 +186,8 @@ def flash_bwd(
184186
dv = T.alloc_fragment([block_M, dim_v], accum_dtype)
185187
dk = T.alloc_fragment([block_M, dim_qk], accum_dtype)
186188
dq = T.alloc_fragment([block_N, dim_qk], accum_dtype)
187-
dv_shared = T.alloc_shared([block_N, dim_v], dtype)
188-
dk_shared = T.alloc_shared([block_N, dim_qk], dtype)
189+
dv_shared = T.alloc_shared([block_M, dim_v], dtype)
190+
dk_shared = T.alloc_shared([block_M, dim_qk], dtype)
189191

190192
T.annotate_layout({
191193
dQ: make_dq_layout(dQ),
@@ -230,10 +232,10 @@ def flash_bwd(
230232
if k * block_N + i < seq_len:
231233
T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
232234

233-
for i, j in T.Parallel(block_M, dim_v):
234-
T.atomic_add(dV[bz, by * block_M + i, bx // groups, j], dv[i, j])
235-
for i, j in T.Parallel(block_M, dim_qk):
236-
T.atomic_add(dK[bz, by * block_M + i, bx // groups, j], dk[i, j])
235+
T.copy(dv, dv_shared)
236+
T.copy(dv_shared, dV[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
237+
T.copy(dk, dk_shared)
238+
T.copy(dk, dK[bx % groups, bz, by * block_M:(by + 1) * block_M, bx // groups, :])
237239

238240
return flash_bwd
239241

@@ -274,13 +276,14 @@ def maybe_contiguous(x):
274276
kernel = flashattn_bwd(BATCH, H, N_CTX, D_HEAD_QK, D_HEAD_V, ctx.causal, block_M, block_N,
275277
groups)
276278
shape_q = [BATCH, N_CTX, H, D_HEAD_QK]
277-
shape_k = [BATCH, N_CTX, HEAD_KV, D_HEAD_QK]
278-
shape_v = [BATCH, N_CTX, HEAD_KV, D_HEAD_V]
279+
shape_k = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_QK] # sum after kernel
280+
shape_v = [groups, BATCH, N_CTX, HEAD_KV, D_HEAD_V] # sum after kernel
279281
dq = torch.zeros(shape_q, dtype=torch.float32, device=q.device)
280-
dk = torch.zeros(shape_k, dtype=torch.float16, device=q.device)
281-
dv = torch.zeros(shape_v, dtype=torch.float16, device=q.device)
282+
dk = torch.empty(shape_k, dtype=torch.float16, device=q.device)
283+
dv = torch.empty(shape_v, dtype=torch.float16, device=q.device)
282284
kernel(q, k, v, do, lse, delta, dq, dk, dv)
283285
dq = mod_post(dq)
286+
dk, dv = dk.sum(0), dv.sum(0)
284287
return dq, dk, dv, None, None
285288

286289

@@ -354,6 +357,7 @@ def main(BATCH: int = 1,
354357
torch.testing.assert_close(dV, dV_ref, rtol=1e-2, atol=1e-2)
355358
torch.testing.assert_close(dK, dK_ref, rtol=1e-2, atol=1e-2)
356359
torch.testing.assert_close(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
360+
print('All checks passed.✅')
357361

358362
def run():
359363
O_ref.backward(dO, retain_graph=True)

0 commit comments

Comments
 (0)