forked from tianocore/edk2
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathNvmeOfNbft.c
1041 lines (905 loc) · 42.6 KB
/
NvmeOfNbft.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** @file
Implementation for NVMeOF Boot Firmware Table publication.
Copyright (c) 2020, Dell EMC All rights reserved
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "NvmeOfImpl.h"
#include "NvmeOfDriver.h"
#include "NvmeOfNbft.h"
#include "spdk/nvme.h"
#include "nvme_internal.h"
#include "spdk/string.h"
BOOLEAN gNbftInstalled = FALSE;
UINTN gTableKey;
NVMEOF_NBFT_HEAP gNbftHeap;
LIST_ENTRY gAddedAdaptersList;
NVMEOF_PROCESSED_NAMESPACE gProcessedNamespaceList;
NVMEOF_PROCESSED_IP_ADDR gProcessedIpConfigList;
NVMEOF_GLOBAL_DATA *NvmeOfData;
extern EFI_HANDLE mImageHandler;
extern CHAR8 *gNvmeOfImagePath;
/**
Add one item into the heap.
@param[in, out] Heap On input, the current address of the heap. On output, the address of
the heap after the item is added.
@param[in] Data The data to add into the heap.
@param[in] Len Length of the Data in byte.
**/
VOID
NvmeOfAddHeapItem (
IN OUT UINT8 **Heap,
IN VOID *Data,
IN UINTN Len
)
{
if (Len != 0) {
CopyMem (*Heap, Data, Len);
*(*Heap + Len) = 0;
*Heap += Len + 1;
gNbftHeap.Length += Len + 1;
}
}
/**
Copy to the original heap and adjust offsets in the structures.
@param[in] Table The ACPI table.
@param[in] HostOnly Flag indicating only Host structure being populated to ACPI.
**/
VOID
NvmeOfFillHeapOffsets (
IN EFI_ACPI_NVMEOF_BFT_HEADER *Table,
IN BOOLEAN HostOnly
)
{
EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *Control;
EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR *Host;
EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *HfiHeader;
EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_TCP *HfiTcpTransportInfo;
EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *SubsystemNamespace;
EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR *Discovery;
EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR *SsnsExtInfo;
UINT32 TableSize = 0;
UINT8 *ActualHeap = NULL;
UINT8 *HeapStart = NULL;
UINT8 Index = 0;
UINT8 RecordSeperator = 1;
Control = (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *)(Table + 1);
Discovery = (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR *)((UINT8 *)Table + Control->DiscoDescOffset);
TableSize = NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_HEADER)) +
NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE)) +
NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR)) +
(Control->NumHfis * NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR))) +
(Control->NumNamespaces * NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR))) +
(Control->NumSecurityProfiles * NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_SECURITY_DESCRIPTOR))) +
(Control->NumDiscoveryEntires * NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR)));
HeapStart = ActualHeap = (UINT8 *)Table + TableSize;
// Copy the data to actual heap offset
CopyMem (ActualHeap, gNbftHeap.Heap, gNbftHeap.Length);
// Adjust the length and heap offset for Header structure
Table->Length = TableSize + gNbftHeap.Length;
Table->HeapOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
// Adjust the heap offset for Header structure
if (Table->DrvDevPathSignatureLength > 0) {
Table->DrvDevPathSignatureOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + Table->DrvDevPathSignatureLength + RecordSeperator;
} else {
Table->DrvDevPathSignatureOffset = (UINT32)0;
}
// Adjust the heap offset for Host structure
Host = (EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR *)((UINT8 *)Table + Control->HostDescOffset);
if (Host->HostNqnLen > 0) {
Host->HostNqnOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + Host->HostNqnLen + RecordSeperator;
} else {
Host->HostNqnOffset = (UINT32)0;
}
// Adjust the heap offset for HFI header and transport Info structure
HfiHeader = (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *)((UINT8 *)Table + Control->HfiDescOffset);
for (Index = 0; Index < Control->NumHfis; Index++) {
// Host Info structure offset
if (HfiHeader->InfoStructureLen > 0) {
HfiHeader->InfoStructureOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + HfiHeader->InfoStructureLen + RecordSeperator;
HfiTcpTransportInfo =
(EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_TCP *)((UINT8 *)Table + HfiHeader->InfoStructureOffset);
if (HfiTcpTransportInfo->HostNameLength > 0) {
HfiTcpTransportInfo->HostNameOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + HfiTcpTransportInfo->HostNameLength + RecordSeperator;
} else {
HfiTcpTransportInfo->HostNameOffset = (UINT32)0;
}
} else {
HfiHeader->InfoStructureOffset = (UINT32)0;
}
HfiHeader = (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *)((UINT8 *)HfiHeader +
NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR)));
}
// Adjust the heap offset for subsystem structure
SubsystemNamespace =
(EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *)((UINT8 *)Table + Control->SubSytemDescOffset);
for (Index = 0; Index < Control->NumNamespaces; Index++) {
if (SubsystemNamespace->SubsystemTransportAdressLength > 0) {
SubsystemNamespace->SubsystemTransportAdressOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + SubsystemNamespace->SubsystemTransportAdressLength + RecordSeperator;
} else {
SubsystemNamespace->SubsystemTransportAdressOffset = (UINT32)0;
}
if (SubsystemNamespace->SubsystemTransportServiceIdLength > 0) {
SubsystemNamespace->SubsystemTransportServiceIdOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + SubsystemNamespace->SubsystemTransportServiceIdLength + RecordSeperator;
} else {
SubsystemNamespace->SubsystemTransportServiceIdOffset = (UINT32)0;
}
if (SubsystemNamespace->HfiAssociationLen > 0) {
SubsystemNamespace->HfiAssociationOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + SubsystemNamespace->HfiAssociationLen + RecordSeperator;
} else {
SubsystemNamespace->HfiAssociationOffset = (UINT32)0;
}
if (SubsystemNamespace->SubsystemNamespaceNqnLen > 0) {
SubsystemNamespace->SubsystemNamespaceNqnOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + SubsystemNamespace->SubsystemNamespaceNqnLen + RecordSeperator;
} else {
SubsystemNamespace->SubsystemNamespaceNqnOffset = (UINT16)0;
}
if (SubsystemNamespace->SsnsExtendedInfoLength > 0) {
SubsystemNamespace->SsnsExtendedInfoOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + SubsystemNamespace->SsnsExtendedInfoLength + RecordSeperator;
SsnsExtInfo =
(EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR *)((UINT8 *)Table + SubsystemNamespace->SsnsExtendedInfoOffset);
if (SsnsExtInfo->DhcpRootPathLength > 0) {
SsnsExtInfo->DhcpRootPathOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + SsnsExtInfo->DhcpRootPathLength + RecordSeperator;
} else {
SsnsExtInfo->DhcpRootPathOffset = (UINT32)0;
}
} else {
SubsystemNamespace->SsnsExtendedInfoOffset = (UINT32)0;
}
SubsystemNamespace =
(EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *)((UINT8 *)SubsystemNamespace +
NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR)));
}
// Adjust the heap offset for discovery structure
if (!HostOnly) {
for (Index = 0; Index < Control->NumDiscoveryEntires; Index++) {
if (Discovery->DiscoveryCtrlrAddrLen > 0) {
Discovery->DiscoveryCtrlrAddrOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + Discovery->DiscoveryCtrlrAddrLen + RecordSeperator;
} else {
Discovery->DiscoveryCtrlrAddrOffset = (UINT32)0;
}
if (Discovery->DiscoveryCtrlrNqnLen > 0) {
Discovery->DiscoveryCtrlrNqnOffset = (UINT32)((UINTN)ActualHeap - (UINTN)Table);
ActualHeap = (UINT8 *)ActualHeap + Discovery->DiscoveryCtrlrNqnLen + RecordSeperator;
} else {
Discovery->DiscoveryCtrlrNqnOffset = (UINT32)0;
}
Discovery = (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR *)((UINT8 *)Discovery +
NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR)));
}
}
// Update heap length in header structure
Table->HeapLength = (UINT32)((UINTN)ActualHeap - (UINTN)HeapStart);
}
/**
Initialize the header of the NVMeOF Boot Firmware Table.
@param[out] Header The header of the NVMeOF Boot Firmware Table.
@param[in] OemId The OEM ID.
@param[in] OemTableId The OEM table ID for the nBFT.
**/
VOID
NvmeOfInitIbfTableHeader (
OUT EFI_ACPI_NVMEOF_BFT_HEADER *Header,
IN UINT8 *OemId,
IN UINT64 *OemTableId,
IN OUT UINT8 **Heap
)
{
UINT16 Length;
Header->Signature = EFI_ACPI_3_0_NVMEOF_BFT_SIGNATURE;
Header->Length = sizeof (EFI_ACPI_NVMEOF_BFT_HEADER);
Header->Revision = EFI_ACPI_NVMEOF_BFT_REVISION;
Header->MinorRevision = EFI_ACPI_NVMEOF_BFT_MINOR_REVISION;
Header->Checksum = 0;
CopyMem (Header->OemId, OemId, sizeof (Header->OemId));
CopyMem (&Header->OemTableId, OemTableId, sizeof (UINT64));
Header->CreatorId = PcdGet32 (PcdAcpiDefaultCreatorId);;
Header->CreatorRevision = PcdGet32 (PcdAcpiDefaultCreatorRevision);
Header->HeapLength = 0;
Header->HeapOffset = 0;
Header->DrvDevPathSignatureOffset = 0;
Header->DrvDevPathSignatureLength = 0;
if(gNvmeOfImagePath != NULL) {
Length = AsciiStrLen (gNvmeOfImagePath);
NvmeOfAddHeapItem (Heap, gNvmeOfImagePath, Length);
Header->DrvDevPathSignatureLength = Length;
}
}
/**
Initialize the control section of the NVMeOF Boot Firmware Table.
@param[in] Table The ACPI table.
**/
VOID
NvmeOfInitControlSection (
IN EFI_ACPI_NVMEOF_BFT_HEADER *Table
)
{
EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *Control;
Control = (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *) (Table + 1);
Control->StructureId = EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE_ID;
Control->MajorRevision = EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE_VERSION;
Control->MinorRevision = EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE_MINOR_VERSION;
Control->Length = (UINT16) sizeof (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE);
Control->Flags = EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE_FLAG_BLOCK_VALID;
Control->NumHfis = 0;
Control->NumNamespaces = 0;
Control->NumSecurityProfiles = 0;
Control->NumDiscoveryEntires = 0;
}
/**
Fill the host section of the NVMeOF Boot Firmware Table.
@param[in] Table The ACPI table.
@param[in, out] Heap The heap.
**/
VOID
NvmeOfFillHostSection (
IN EFI_ACPI_NVMEOF_BFT_HEADER *Table,
IN OUT UINT8 **Heap
)
{
EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *Control;
EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR *Host;
UINTN NvmeOfDataSize = 0;
UINT16 Length;
Control = (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *)(Table + 1);
//
// Host section immediately follows the control section.
//
Host = (EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR *)
((UINT8 *)Table + NBFT_ROUNDUP (Table->Length) + NBFT_ROUNDUP (Control->Length));
Control->HostDescOffset = (UINT32)((UINTN)Host - (UINTN)Table);
Host->StructureId = EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR_ID;
Control->HostDescVersion = EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR_VERSION;
Control->HostDescLength = (UINT16) sizeof (EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR);
Host->Flags = EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR_FLAG_BLOCK_VALID| \
EFI_ACPI_NVMEOF_BFT_HOSTID_CONFIGURED|EFI_ACPI_NVMEOF_BFT_HOSTNQN_CONFIGURED;
// Read the host data from UEFI variable
NvmeOfData = NvmeOfGetVariableAndSize (
L"NvmeofGlobalData",
&gNvmeOfConfigGuid,
&NvmeOfDataSize
);
if (NvmeOfData == NULL || NvmeOfDataSize == 0) {
DEBUG ((EFI_D_ERROR, "NvmeOfData Read Failed\n"));
return;
}
// Host identifier in UUID format
CopyMem (Host->HostIdentifier, NvmeOfData->NvmeofHostId, sizeof (Host->HostIdentifier));
//
// Fill the NVMeOF Host NQN into the heap.
//
Length = (UINT16)AsciiStrLen (NvmeOfData->NvmeofHostNqn);
NvmeOfAddHeapItem (Heap, NvmeOfData->NvmeofHostNqn, Length);
Host->HostNqnLen = Length;
}
/**
Map the v4 IP address into v6 IP address.
@param[in] V4 The v4 IP address.
@param[out] V6 The v6 IP address.
**/
VOID
NvmeOfMapV4ToV6Addr (
IN EFI_IPv4_ADDRESS *V4,
OUT EFI_IPv6_ADDRESS *V6
)
{
UINTN Index;
ZeroMem (V6, sizeof (EFI_IPv6_ADDRESS));
V6->Addr[10] = 0xff;
V6->Addr[11] = 0xff;
for (Index = 0; Index < 4; Index++) {
V6->Addr[12 + Index] = V4->Addr[Index];
}
}
/**
Fill the Host Fabric Interface sections in NVMeOF Boot Firmware Table.
@param[in] Table The buffer of the ACPI table.
@param[in, out] Heap The heap buffer used to store the variable length
parameters such as NVMeOF name.
**/
VOID
NvmeOfFillHostFabricInterfaceSections (
IN EFI_ACPI_NVMEOF_BFT_HEADER *Table,
IN OUT UINT8 **Heap
)
{
EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *Control;
EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *HfiHeader;
EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_TCP HfiTcpTransportInfo = { 0 };
NVMEOF_SUBSYSTEM_CONFIG_NVDATA *NvData;
UINTN AdapterIndex = 0;
UINTN Index;
LIST_ENTRY *Entry;
LIST_ENTRY *NextEntry;
NVMEOF_ATTEMPT_ENTRY *AttemptEntry;
NVMEOF_ATTEMPT_CONFIG_NVDATA *Attempt;
NVMEOF_NIC_INFO *NicInfo;
CHAR16 AttemptMacString[NVMEOF_MAX_MAC_STRING_LEN] = { 0 };
CHAR16 MacString[NVMEOF_MAX_MAC_STRING_LEN];
BOOLEAN AlreadyProcessed;
LIST_ENTRY *ProcessedEntry;
LIST_ENTRY *NextEntryProcessed;
NVMEOF_PROCESSED_MAC *ProcessedAdapter;
UINT8 **HostOverridesHeapRef;
UINT8 NvmeofHostNqnOverrideTmp[NVMEOF_NAME_MAX_SIZE];
//
// Get the offset of the first hfi section.
//
Control = (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *)(Table + 1);
HfiHeader = (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *)((UINTN)Table +
Control->HostDescOffset + NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR)));
// Fill the offset of 1st hfi header structure in control structure
Control->HfiDescOffset = (UINT16)((UINTN)HfiHeader - (UINTN)Table);
NET_LIST_FOR_EACH_SAFE (Entry, NextEntry, &mNicPrivate->AttemptConfigs) {
AttemptEntry = NET_LIST_USER_STRUCT (Entry, NVMEOF_ATTEMPT_ENTRY, Link);
Attempt = &AttemptEntry->Data;
NvData = &Attempt->SubsysConfigData;
SetMem (NvmeofHostNqnOverrideTmp, sizeof (NvmeofHostNqnOverrideTmp), 0);
// Check if start invoked for this NIC
NicInfo = NvmeOfGetNicInfoByIndex (Attempt->NicIndex);
if (NicInfo == NULL) {
continue;
}
// Logic to skip already processed adapter by comparing MAC
AlreadyProcessed = FALSE;
NET_LIST_FOR_EACH_SAFE (ProcessedEntry, NextEntryProcessed, &gAddedAdaptersList) {
ProcessedAdapter = NET_LIST_USER_STRUCT (ProcessedEntry, NVMEOF_PROCESSED_MAC, Link);
if (AsciiStrCmp (Attempt->MacString, ProcessedAdapter->MacString) == 0) {
AlreadyProcessed = TRUE;
break;
}
}
if (AlreadyProcessed) {
continue;
}
//
// Fill the Host fabric interface header section.
//
HfiHeader->StructureId = EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR_ID;
Control->HfiDescVersion = EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR_VERSION;
HfiHeader->Index = (UINT16) AdapterIndex + 1 ;
HfiHeader->Flags = EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR_FLAG_BLOCK_VALID;
Control->HfiDescLength = (UINT16) sizeof (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR);
HostOverridesHeapRef = Heap;
HfiHeader->HfiTransportType = NVMEOF_TRANSPORT_TCP; // NVMe/TCP (802.11 + TCP/IP)
// Fill the Hfi transport info structure
HfiTcpTransportInfo.Header.StructureId = EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_DESCRIPTOR_ID;
HfiTcpTransportInfo.Header.HfiTransportType = EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_HFI_TYPE_TCPIP;
HfiTcpTransportInfo.Header.Version = EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_VERSION;
HfiTcpTransportInfo.Header.HfiTransportInfoVersion = EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_VERSION;
HfiHeader->InfoStructureLen = sizeof (EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_TCP);
HfiTcpTransportInfo.Header.HfiIndex = (UINT16) HfiHeader->Index;
HfiTcpTransportInfo.TransportFlags = EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_DESCRIPTOR_FLAG_BLOCK_VALID |
EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_DESCRIPTOR_FLAG_GLOBAL_LOCAL_ROUTE;
if (NvData->HostInfoDhcp) {
HfiTcpTransportInfo.TransportFlags |= EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_DESCRIPTOR_FLAG_DHCP_OVERRIDE;
HfiTcpTransportInfo.Origin = IpPrefixOriginDhcp;
} else {
HfiTcpTransportInfo.Origin = IpPrefixOriginManual;
}
if ((NvData->NvmeofIpMode == IP_MODE_IP4) ||
(Attempt->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP4)) {
//
// Get the subnet mask prefix length.
//
HfiTcpTransportInfo.SubnetMaskPrefix = NvmeOfGetSubnetMaskPrefixLength (&NvData->NvmeofSubsysHostSubnetMask.v4);
//
// Map the various v4 addresses into v6 addresses.
//
NvmeOfMapV4ToV6Addr (&NvData->NvmeofSubsysHostIP.v4, &HfiTcpTransportInfo.IpAddress);
NvmeOfMapV4ToV6Addr (&NvData->NvmeofSubsysHostGateway.v4, &HfiTcpTransportInfo.Gateway);
NvmeOfMapV4ToV6Addr (&Attempt->PrimaryDns.v4, &HfiTcpTransportInfo.PrimaryDns);
NvmeOfMapV4ToV6Addr (&Attempt->SecondaryDns.v4, &HfiTcpTransportInfo.SecondaryDns);
NvmeOfMapV4ToV6Addr (&Attempt->DhcpServer.v4, &HfiTcpTransportInfo.DhcpServer);
} else if ((NvData->NvmeofIpMode == IP_MODE_IP6) ||
(Attempt->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP6)) {
HfiTcpTransportInfo.SubnetMaskPrefix = NvData->NvmeofPrefixLength;
CopyMem (&HfiTcpTransportInfo.IpAddress, &NvData->NvmeofSubsysHostIP, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&HfiTcpTransportInfo.Gateway, &NvData->NvmeofSubsysHostGateway, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&HfiTcpTransportInfo.PrimaryDns, &Attempt->PrimaryDns, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&HfiTcpTransportInfo.SecondaryDns, &Attempt->SecondaryDns, sizeof (EFI_IPv6_ADDRESS));
CopyMem (&HfiTcpTransportInfo.DhcpServer, &Attempt->DhcpServer, sizeof (EFI_IPv6_ADDRESS));
} else {
ASSERT (FALSE);
}
HfiTcpTransportInfo.RouteMetric = NvData->RouteMetric;
//
// Update the length of hostname
//
HfiTcpTransportInfo.HostNameLength = (UINT16)AsciiStrLen (NvData->HostName);
//
// Adapter Info: VLAN tag, Mac address, PCI location.
//
HfiTcpTransportInfo.VLanTag = NicInfo->VlanId;
CopyMem (HfiTcpTransportInfo.Mac, &NicInfo->PermanentAddress, sizeof (HfiTcpTransportInfo.Mac));
HfiTcpTransportInfo.PciLocation = (UINT16)((NicInfo->BusNumber << 8) |
(NicInfo->DeviceNumber << 3) | NicInfo->FunctionNumber);
// Convert MAC to string.
NvmeOfMacAddrToStr (&NicInfo->PermanentAddress, NicInfo->HwAddressSize,
NicInfo->VlanId, MacString);
for (Index = 0; Index < gNvmeOfNbftListIndex; Index++) {
AsciiStrToUnicodeStrS (gNvmeOfNbftList[Index].AttemptData->MacString, AttemptMacString,
sizeof (AttemptMacString) / sizeof (AttemptMacString[0]));
if (StrCmp (MacString, AttemptMacString) != 0) {
continue;
} else {
gNvmeOfNbftList[Index].DeviceAdapterIndex = HfiHeader->Index;
if (AsciiStrCmp (gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofSubsysNqn,
NVMEOF_DISCOVERY_NQN) == 0) {
gNvmeOfNbftList[Index].IsDiscoveryNqn = TRUE;
} else {
gNvmeOfNbftList[Index].IsDiscoveryNqn = FALSE;
}
}
}
// Copy HFI tenasport info to heap and update the HFI header structure
NvmeOfAddHeapItem (Heap, &HfiTcpTransportInfo, sizeof (EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_TCP));
HfiHeader->InfoStructureLen = sizeof (EFI_ACPI_NVMEOF_BFT_HFI_TRANSPORT_INFO_DESCRIPTOR_TCP);
// Copy the NVMeOF Host name into the heap.
NvmeOfAddHeapItem (Heap, NvData->HostName, HfiTcpTransportInfo.HostNameLength);
// Add an entry to processed adapter list
ProcessedAdapter = (NVMEOF_PROCESSED_MAC *)AllocateZeroPool (sizeof (NVMEOF_PROCESSED_MAC));
if (ProcessedAdapter == NULL) {
return;
}
CopyMem (ProcessedAdapter->MacString, Attempt->MacString, sizeof (ProcessedAdapter->MacString));
ProcessedAdapter->HfiHeaderRef = HfiHeader;
ProcessedAdapter->HostOverrideEnable = NvData->HostOverrideEnable;
ProcessedAdapter->HeapRef = HostOverridesHeapRef;
InsertTailList (&gAddedAdaptersList, &ProcessedAdapter->Link);
//
// Advance to the next adapter section
//
HfiHeader = (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *)((UINTN)HfiHeader +
NBFT_ROUNDUP(sizeof (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR)));
AdapterIndex++;
}
// Populate the num of adapters in control section
Control->NumHfis = AdapterIndex;
}
/**
Fill the Subsystem Namespace sections in NVMeOF Boot Firmware Table.
@param[in] Table The buffer of the ACPI table.
@param[in, out] Heap The heap buffer used to store the variable length
parameters such as NVMeOF name.
**/
VOID
NvmeOfFillSubsystemNamespaceSection (
IN EFI_ACPI_NVMEOF_BFT_HEADER *Table,
UINT8 **Heap
)
{
EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *SubsystemNamespace;
EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *Control;
EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR SsnsExtInfo = { 0 };
EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *HfiHeader;
UINTN DeviceIndex = 0;
UINT8 Index;
LIST_ENTRY *ProcessedEntry;
LIST_ENTRY *NextEntryProcessed;
NVMEOF_PROCESSED_NAMESPACE *ProcessedNamespace;
BOOLEAN AlreadyProcessed;
EFI_IPv6_ADDRESS SubsytemTrasportAddress;
UINT16 Len = 0;
Control = (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *)(Table + 1);
SubsystemNamespace = (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *)((UINTN)Table +
Control->HfiDescOffset +
(Control->NumHfis * NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR))));
HfiHeader = (EFI_ACPI_NVMEOF_BFT_HFI_HEADER_DESCRIPTOR *)((UINTN)Table +
Control->HostDescOffset + NBFT_ROUNDUP(sizeof (EFI_ACPI_NVMEOF_BFT_HOST_DESCRIPTOR)));
// Fill the offset of 1st namespace structure in control structure
Control->SubSytemDescOffset = (UINT16)((UINTN)SubsystemNamespace - (UINTN)Table);
// Iterate on each namespace and populate the details.
for (Index = 0; Index < gNvmeOfNbftListIndex; Index++) {
//
// Fill the Subsystem Namespace section.
//
SubsystemNamespace->StructureId = EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR_ID;
Control->SubSystemVersion = EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_DESCRIPTOR_VERSION;
Control->SubSystemDescLength = (UINT16) sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR);
SubsystemNamespace->Index = (UINT16)DeviceIndex + 1;
SubsystemNamespace->Flags |= EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_DESCRIPTOR_FLAG_BLOCK_VALID;
SubsystemNamespace->SubsystemTransportAdressLength = sizeof (EFI_IPv6_ADDRESS);
SubsystemNamespace->HfiAssociationLen = sizeof (UINT8);
//SsnsExtInfo section
SsnsExtInfo.StructureId = EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_INFO_EXT_DESCRIPTOR_ID;
SsnsExtInfo.Version = EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR_VERSION;
SsnsExtInfo.SsnsIndex = Index + 1;
SsnsExtInfo.Flags = EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR_VERSION_FLAG_STRUCTURE_VALID;
SubsystemNamespace->Flags |= EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_DESCRIPTOR_FLAG_USE_SSNS_EXT_INFO;
SubsystemNamespace->SsnsExtendedInfoLength = sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR);
// Transport type
SubsystemNamespace->TransportType = NVMEOF_TRANSPORT_TCP;
if (gNvmeOfNbftList[Index].IsDiscoveryNqn) {
SubsystemNamespace->PrimaryDiscoveryCtrlrIndex = gNvmeOfNbftList[Index].DeviceAdapterIndex;
// Update flag
SubsystemNamespace->Flags |= EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_DESCRIPTOR_FLAG_DISCOVERED_NAMESPACE;
}
// Root Path in heap
if (gNvmeOfRootPath != NULL) {
SsnsExtInfo.DhcpRootPathLength = (AsciiStrLen (gNvmeOfRootPath) - 1);
} else {
SsnsExtInfo.DhcpRootPathLength = 0;
}
// For failed connection
if (gNvmeOfNbftList[Index].IsFailed == TRUE) {
SubsystemNamespace->Flags |= EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_DESCRIPTOR_FLAG_UNAVAILABLE_NAMESPACE_1;
// Transport address
if ((gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofIpMode == IP_MODE_IP4) ||
(gNvmeOfNbftList[Index].AttemptData->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP4)) {
EFI_IPv4_ADDRESS v4;
NetLibAsciiStrToIp4 (gNvmeOfNbftList[Index].FailTridInfo->traddr, &v4);
NvmeOfMapV4ToV6Addr (&v4, &SubsytemTrasportAddress);
NvmeOfAddHeapItem(Heap, &SubsytemTrasportAddress, sizeof (EFI_IPv6_ADDRESS));
} else if ((gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofIpMode == IP_MODE_IP6) ||
(gNvmeOfNbftList[Index].AttemptData->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP6)) {
NetLibAsciiStrToIp6 (gNvmeOfNbftList[Index].FailTridInfo->traddr,
&SubsytemTrasportAddress);
NvmeOfAddHeapItem (Heap, &SubsytemTrasportAddress, sizeof (EFI_IPv6_ADDRESS));
} else {
ASSERT (FALSE);
}
// Transport port
Len = AsciiStrLen (gNvmeOfNbftList[Index].FailTridInfo->trsvcid);
SubsystemNamespace->SubsystemTransportServiceIdLength = Len;
NvmeOfAddHeapItem (Heap, gNvmeOfNbftList[Index].FailTridInfo->trsvcid, Len);
SubsystemNamespace->PrimaryHfiDescriptorIndex = HfiHeader->Index;
// HFI association
NvmeOfAddHeapItem (Heap, &(gNvmeOfNbftList[Index].DeviceAdapterIndex), sizeof(UINT8));
// Fill the subsystem NQN into the heap.
Len = (UINT16)AsciiStrLen (gNvmeOfNbftList[Index].FailTridInfo->subnqn);
NvmeOfAddHeapItem (Heap, gNvmeOfNbftList[Index].FailTridInfo->subnqn, Len);
SubsystemNamespace->SubsystemNamespaceNqnLen = Len;
// Copy SsnsExtInfo to heap and update the SubSystem Namespace header structure
NvmeOfAddHeapItem (Heap, &SsnsExtInfo, sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR));
if (SsnsExtInfo.DhcpRootPathLength > 0) {
NvmeOfAddHeapItem (Heap, gNvmeOfRootPath, SsnsExtInfo.DhcpRootPathLength);
}
// Advance the subsystem namespace section
SubsystemNamespace = (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *)((UINTN)SubsystemNamespace +
NBFT_ROUNDUP(sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR)));
DeviceIndex++;
continue;
}
// Logic to skip already processed namespace by comparing NID
AlreadyProcessed = FALSE;
NET_LIST_FOR_EACH_SAFE (ProcessedEntry, NextEntryProcessed, &gProcessedNamespaceList.Link) {
ProcessedNamespace = NET_LIST_USER_STRUCT (ProcessedEntry, NVMEOF_PROCESSED_NAMESPACE, Link);
if (CompareMem (SubsystemNamespace->Nid, ProcessedNamespace->Nid, 16) == 0) {
AlreadyProcessed = TRUE;
break;
}
}
if (AlreadyProcessed) {
NvmeOfAddHeapItem (Heap, &(gNvmeOfNbftList[Index].DeviceAdapterIndex), sizeof (UINT8));
SubsystemNamespace->HfiAssociationLen += sizeof (UINT8);
continue;
}
// Transport address
if ((gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofIpMode == IP_MODE_IP4) ||
(gNvmeOfNbftList[Index].AttemptData->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP4)) {
EFI_IPv4_ADDRESS v4;
NetLibAsciiStrToIp4 (gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->trid.traddr, &v4);
NvmeOfMapV4ToV6Addr (&v4, &SubsytemTrasportAddress);
NvmeOfAddHeapItem (Heap, &SubsytemTrasportAddress, sizeof (EFI_IPv6_ADDRESS));
} else if ((gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofIpMode == IP_MODE_IP6) ||
(gNvmeOfNbftList[Index].AttemptData->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP6)) {
NetLibAsciiStrToIp6 (gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->trid.traddr,
&SubsytemTrasportAddress);
NvmeOfAddHeapItem (Heap, &SubsytemTrasportAddress, sizeof (EFI_IPv6_ADDRESS));
} else {
ASSERT (FALSE);
}
// Transport port
Len = AsciiStrLen (gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->trid.trsvcid);
SubsystemNamespace->SubsystemTransportServiceIdLength = Len;
NvmeOfAddHeapItem (Heap, gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->trid.trsvcid, Len);
// Subsystem Port ID
SubsystemNamespace->SubsytemPortId = 0;
// NSID
SubsystemNamespace->Nsid = gNvmeOfNbftList[Index].Device->NamespaceId;
// NID type
SubsystemNamespace->NidType = gNvmeOfNbftList[Index].Device->NamespaceIdType;
// Fill the NID
CopyMem (SubsystemNamespace->Nid, gNvmeOfNbftList[Index].Device->NamespaceUuid,
sizeof (SubsystemNamespace->Nid));
SubsystemNamespace->PrimaryHfiDescriptorIndex = HfiHeader->Index;
// HFI association
NvmeOfAddHeapItem (Heap, &(gNvmeOfNbftList[Index].DeviceAdapterIndex), sizeof (UINT8));
SubsystemNamespace->HfiAssociationLen = sizeof (UINT8);
// Fill the subsystem NQN into the heap.
Len = (UINT16)AsciiStrLen (gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->trid.subnqn);
NvmeOfAddHeapItem (Heap, gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->trid.subnqn, Len);
SubsystemNamespace->SubsystemNamespaceNqnLen = Len;
// Controller ID
SsnsExtInfo.ControllerId = gNvmeOfNbftList[Index].Device->NameSpace->ctrlr->cntlid;
if (gNvmeOfNbftList[Index].IsDiscoveryNqn) {
// ASQSZ
SsnsExtInfo.Asqsz = gNvmeOfNbftList[Index].Device->Asqsz;
} else {
SsnsExtInfo.Asqsz = DEFAULT_ADMIN_QUEUE_SIZE;
}
// Copy SsnsExtInfo to heap and update the SubSystem Namespace header structure
NvmeOfAddHeapItem (Heap, &SsnsExtInfo, sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_EXT_INFO_DESCRIPTOR));
if (SsnsExtInfo.DhcpRootPathLength > 0) {
NvmeOfAddHeapItem (Heap, gNvmeOfRootPath, SsnsExtInfo.DhcpRootPathLength);
}
// Add an entry to processed namespace list
ProcessedNamespace = AllocateZeroPool (sizeof (NVMEOF_PROCESSED_NAMESPACE));
if (ProcessedNamespace == NULL) {
return;
}
CopyMem (ProcessedNamespace->Nid, SubsystemNamespace->Nid, sizeof (ProcessedNamespace->Nid));
InsertTailList (&gProcessedNamespaceList.Link, &ProcessedNamespace->Link);
// Advance the subsystem namespace section
SubsystemNamespace = (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR *)((UINTN)SubsystemNamespace +
NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR)));
DeviceIndex++;
}
Control->NumNamespaces = DeviceIndex;
}
/**
Fill the Discovery section of the NVMeOF Boot Firmware Table.
@param[in] Table The ACPI table.
@param[in, out] Heap The heap.
**/
VOID
NvmeOfFillDiscoverySection (
IN EFI_ACPI_NVMEOF_BFT_HEADER *Table,
IN OUT UINT8 **Heap
)
{
INT8 AdapterIndex = -1;
UINT8 Index = 0;
EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *Control;
EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR *Discovery;
NVMEOF_DISCOVERY_DETAILS *DiscoveryDetails;
CHAR8 IpAddrStr[256];
CHAR8 UriTransportAddr[300];
UINT32 MaxDiscoveryDetailsIndex = 0;
Control = (EFI_ACPI_NVMEOF_BFT_CONTROL_STRUCTURE *)(Table + 1);
Discovery = (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR *)((UINTN)Table +
(Control->SubSytemDescOffset +
(Control->NumNamespaces * NBFT_ROUNDUP (sizeof (EFI_ACPI_NVMEOF_BFT_SUBSYSTEM_NAMESPACE_DESCRIPTOR)))
+ (Control->NumSecurityProfiles * NBFT_ROUNDUP(sizeof (EFI_ACPI_NVMEOF_BFT_SECURITY_DESCRIPTOR)))));
// Fill the offset of discovery structure in control structure
Control->DiscoDescOffset = (UINT16)((UINTN)Discovery - (UINTN)Table);
// Find the number of discovery controllers in the list
for (Index = 0; Index < gNvmeOfNbftListIndex; Index++) {
if (gNvmeOfNbftList[Index].DeviceAdapterIndex != AdapterIndex &&
gNvmeOfNbftList[Index].IsDiscoveryNqn) {
MaxDiscoveryDetailsIndex++;
AdapterIndex = gNvmeOfNbftList[Index].DeviceAdapterIndex;
}
}
if (MaxDiscoveryDetailsIndex == 0)
{
//No need to fill this structure as we have no discovery controller
Control->NumDiscoveryEntires = 0;
Discovery->DiscoveryCtrlrAddrLen = 0;
Discovery->DiscoveryCtrlrNqnLen = 0;
return;
}
DiscoveryDetails =
(NVMEOF_DISCOVERY_DETAILS *)AllocateZeroPool (sizeof (NVMEOF_DISCOVERY_DETAILS) * MaxDiscoveryDetailsIndex);
if (DiscoveryDetails == NULL) {
return;
}
Discovery->Index = 0;
AdapterIndex = -1;
UINT8 NumRecs = 0;
// Find the number of discovery records
for (Index = 0; Index < gNvmeOfNbftListIndex; Index++) {
if (gNvmeOfNbftList[Index].DeviceAdapterIndex != AdapterIndex &&
gNvmeOfNbftList[Index].IsDiscoveryNqn) {
AdapterIndex = DiscoveryDetails[NumRecs].AdapterIndex =
gNvmeOfNbftList[Index].DeviceAdapterIndex;
DiscoveryDetails[NumRecs].SecurityProfileIndex = 0;
DiscoveryDetails[NumRecs].Port =
gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofSubsysPortId;
CopyMem (&DiscoveryDetails[NumRecs].TransportAddress,
&gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofSubSystemIp,
sizeof (DiscoveryDetails[NumRecs].TransportAddress));
if ((gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofIpMode == IP_MODE_IP4) ||
(gNvmeOfNbftList[Index].AttemptData->AutoConfigureMode == IP_MODE_AUTOCONFIG_IP4)) {
DiscoveryDetails[NumRecs].Ipv6Flag = FALSE;
} else {
DiscoveryDetails[NumRecs].Ipv6Flag = TRUE;
}
CopyMem(DiscoveryDetails[NumRecs].Nqn,
gNvmeOfNbftList[Index].AttemptData->SubsysConfigData.NvmeofSubsysNqn,
sizeof (DiscoveryDetails[NumRecs].Nqn));
NumRecs++;
}
}
for (Index = 0; Index < NumRecs; Index++) {
Discovery->StructureId = EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR_ID;
Control->DiscoDescVersion = EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR_VERSION;
Control->DiscoDescLengh = (UINT16) sizeof (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR);
Discovery->Flags = EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR_FLAG_BLOCK_VALID;
Discovery->HfiDescriptorIndex = DiscoveryDetails[Index].AdapterIndex;
Discovery->SecurityProfileDescriptorIndex =
DiscoveryDetails[Index].SecurityProfileIndex;
NvmeOfIpToStr (DiscoveryDetails[Index].TransportAddress, IpAddrStr,
DiscoveryDetails[Index].Ipv6Flag);
if (DiscoveryDetails[Index].Ipv6Flag) {
sprintf (UriTransportAddr, "nvme+tcp://[%a]:%d/",
IpAddrStr, DiscoveryDetails[Index].Port);
} else {
sprintf (UriTransportAddr, "nvme+tcp://%a:%d/", IpAddrStr,
DiscoveryDetails[Index].Port);
}
// Discovery controller address in heap
UINT16 Len = (UINT16)AsciiStrLen (UriTransportAddr);
NvmeOfAddHeapItem (Heap, UriTransportAddr, Len);
Discovery->DiscoveryCtrlrAddrLen = Len;
// Discovery controller NQN in heap
Len = (UINT16)AsciiStrLen (DiscoveryDetails[Index].Nqn);
NvmeOfAddHeapItem (Heap, DiscoveryDetails[Index].Nqn, Len);
Discovery->DiscoveryCtrlrNqnLen = Len;
Discovery->Index = Index + 1;
Discovery = (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR *)((UINT8 *)Discovery +
sizeof (EFI_ACPI_NVMEOF_BFT_DISCOVERY_DESCRIPTOR));
}
Control->NumDiscoveryEntires = NumRecs;
FreePool (DiscoveryDetails);
}
/**
Publish and remove the NVMeOF Boot Firmware Table.
**/
VOID
NvmeOfPublishNbft (
IN BOOLEAN HostStructureOnly
)
{
EFI_STATUS Status;
EFI_ACPI_TABLE_PROTOCOL *AcpiTableProtocol;
EFI_ACPI_NVMEOF_BFT_HEADER *Table = NULL;
EFI_ACPI_3_0_ROOT_SYSTEM_DESCRIPTION_POINTER *Rsdp = NULL;
EFI_ACPI_DESCRIPTION_HEADER *Rsdt = NULL;
EFI_ACPI_DESCRIPTION_HEADER *Xsdt = NULL;
UINT8 Checksum;
UINT8 *Heap = NULL;
NVMEOF_PROCESSED_MAC *ProcessedAdapter = NULL;
NVMEOF_PROCESSED_NAMESPACE *ProcessedNamespace = NULL;
NVMEOF_PROCESSED_IP_ADDR *ProcessedIpConfig = NULL;
LIST_ENTRY *ProcessedEntry = NULL;
LIST_ENTRY *NextProcessedEntry = NULL;
Rsdt = NULL;
Xsdt = NULL;
InitializeListHead (&gAddedAdaptersList);
InitializeListHead (&gProcessedNamespaceList.Link);
InitializeListHead (&gProcessedIpConfigList.Link);
Status = gBS->LocateProtocol (&gEfiAcpiTableProtocolGuid, NULL, (VOID **) &AcpiTableProtocol);
if (EFI_ERROR (Status)) {
return ;
}
//
// Find ACPI table RSD_PTR from the system table.
//
Status = EfiGetSystemConfigurationTable (&gEfiAcpiTableGuid, (VOID **) &Rsdp);
if (EFI_ERROR (Status)) {
Status = EfiGetSystemConfigurationTable (&gEfiAcpi10TableGuid, (VOID **) &Rsdp);
}
if (EFI_ERROR (Status) || (Rsdp == NULL)) {
return ;
} else if (Rsdp->Revision >= EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER_REVISION && Rsdp->XsdtAddress != 0) {
Xsdt = (EFI_ACPI_DESCRIPTION_HEADER *) (UINTN) Rsdp->XsdtAddress;
} else if (Rsdp->RsdtAddress != 0) {
Rsdt = (EFI_ACPI_DESCRIPTION_HEADER *) (UINTN) Rsdp->RsdtAddress;
}
if ((Xsdt == NULL) && (Rsdt == NULL)) {
return;
}
if (gNbftInstalled) {
Status = AcpiTableProtocol->UninstallAcpiTable (
AcpiTableProtocol,
gTableKey
);
if (EFI_ERROR (Status)) {
return ;
}
gNbftInstalled = FALSE;
}
//
// Allocate memory to hold the ACPI table.
//
Table = AllocateZeroPool (NBFT_MAX_SIZE);
if (Table == NULL) {
return ;
}
//
// Allocate memory to hold the heap contents.
//
gNbftHeap.Heap = NULL;
gNbftHeap.Length = 0;
Heap = gNbftHeap.Heap = AllocateZeroPool (NBFT_HEAP_SIZE);
if (gNbftHeap.Heap == NULL) {
goto Error;
}
//
// Fill in the various section of the NVMEOF Boot Firmware Table.
//
if (HostStructureOnly) {
if (Rsdp->Revision >= EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER_REVISION) {
NvmeOfInitIbfTableHeader (Table, Xsdt->OemId, &Xsdt->OemTableId, &Heap);
} else {
NvmeOfInitIbfTableHeader (Table, Rsdt->OemId, &Rsdt->OemTableId, &Heap);
}
NvmeOfInitControlSection (Table);
NvmeOfFillHostSection (Table, &Heap);
} else {
if (Rsdp->Revision >= EFI_ACPI_2_0_ROOT_SYSTEM_DESCRIPTION_POINTER_REVISION) {
NvmeOfInitIbfTableHeader (Table, Xsdt->OemId, &Xsdt->OemTableId, &Heap);
} else {
NvmeOfInitIbfTableHeader (Table, Rsdt->OemId, &Rsdt->OemTableId, &Heap);
}
NvmeOfInitControlSection (Table);
NvmeOfFillHostSection (Table, &Heap);
NvmeOfFillHostFabricInterfaceSections (Table, &Heap);
NvmeOfFillSubsystemNamespaceSection (Table, &Heap);
NvmeOfFillDiscoverySection (Table, &Heap);
}
NvmeOfFillHeapOffsets (Table, HostStructureOnly);
Checksum = CalculateCheckSum8 ((UINT8 *)Table, Table->Length);
Table->Checksum = Checksum;
//
// Install or update the nBFT table.
//
Status = AcpiTableProtocol->InstallAcpiTable (
AcpiTableProtocol,
Table,
Table->Length,
&gTableKey
);
if (EFI_ERROR (Status)) {
goto Error;