Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

AttributeError: 'AutoencoderKL' object has no attribute 'quantize' #130

Open
LitaoLiu01 opened this issue May 17, 2024 · 2 comments
Open

Comments

@LitaoLiu01
Copy link

I run the model correctly in the first four train epochs using my own dataset, which is 320×240, but it have the error when it runs to the first validation.

File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1084, in p_mean_variance
x_recon, , [, _, indices] = self.first_stage_model.quantize(x_recon)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1185, in getattr
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'AutoencoderKL' object has no attribute 'quantize'

What is going on? Can he only process an image of the same length and width?

The full error is:
Traceback (most recent call last):
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/main.py", line 817, in
trainer.fit(model, data)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 553, in fit
self._run(model)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 918, in _run
self._dispatch()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 986, in _dispatch
self.accelerator.start_training(self)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/accelerators/accelerator.py", line 92, in start_training
self.training_type_plugin.start_training(trainer)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/plugins/training_type/training_type_plugin.py", line 161, in start_training
self._results = trainer.run_stage()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 996, in run_stage
return self._run_train()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1045, in _run_train
self.fit_loop.run()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/fit_loop.py", line 200, in advance
epoch_output = self.epoch_loop.run(train_dataloader)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 112, in run
self.on_advance_end()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 177, in on_advance_end
self._run_validation()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/training_epoch_loop.py", line 256, in _run_validation
self.val_loop.run()
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/dataloader/evaluation_loop.py", line 110, in advance
dl_outputs = self.epoch_loop.run(
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/base.py", line 111, in run
self.advance(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 116, in advance
self.on_evaluation_batch_end(output, batch, batch_idx, dataloader_idx)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/loops/epoch/evaluation_epoch_loop.py", line 197, in on_evaluation_batch_end
self.trainer.call_hook(hook_name, output, batch, batch_idx, dataloader_idx)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/trainer.py", line 1217, in call_hook
trainer_hook(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/pytorch_lightning/trainer/callback_hook.py", line 199, in on_validation_batch_end
callback.on_validation_batch_end(self, self.lightning_module, outputs, batch, batch_idx, dataloader_idx)
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/main.py", line 473, in on_validation_batch_end
self.log_img(pl_module, batch, batch_idx, split="val")
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/main.py", line 436, in log_img
images = pl_module.log_images(batch, split=split, **self.log_images_kwargs)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1332, in log_images
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim,
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1259, in sample_log
samples, intermediates = self.sample(cond=cond, batch_size=batch_size,
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1243, in sample
return self.p_sample_loop(cond,
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1215, in p_sample_loop
img = self.p_sample(img, cond, ts,
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
return func(*args, **kwargs)
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1098, in p_sample
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised,
File "/home/bingxing2/home/scx6d13/litaoliu/p2p_script/instruct-pix2pix-main/./stable_diffusion/ldm/models/diffusion/ddpm_edit.py", line 1084, in p_mean_variance
x_recon, , [, _, indices] = self.first_stage_model.quantize(x_recon)
File "/home/bingxing2/home/scx6d13/.conda/envs/ip2p_cu113/lib/python3.9/site-packages/torch/nn/modules/module.py", line 1185, in getattr
raise AttributeError("'{}' object has no attribute '{}'".format(
AttributeError: 'AutoencoderKL' object has no attribute 'quantize'

@LitaoLiu01
Copy link
Author

It also seems there is not the Method 'quantize' in 'AutoencoderKL' Class

@LitaoLiu01
Copy link
Author

So, should I add which 'quantize' Method to 'AutoencoderKL' Class

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant