-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression.py
72 lines (59 loc) · 2.45 KB
/
logistic_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python
from optim.gradient_descent_optimizers import SGDOptimizer
import numpy as np
import scipy.sparse as sps
from sklearn.utils.extmath import safe_sparse_dot
class LogisticRegressionWithSGD:
def __init__(self):
pass
def train(self, X, y, num_features, num_classes, num_iter=100, learning_rate=0.001, l2_reg_param=0.0, batch_size=64, decay=0.0):
"""
X is assumed to be (num_rows, num_features)
y is assumed to be multiclass, values can be from [0, num_classes-1]
"""
sgd_optimizer = SGDOptimizer(num_iter=num_iter, batchsize=batch_size, lrate=learning_rate, reg=l2_reg_param, decay=decay)
num_rows = X.shape[0]
self.W = 0.01 * np.random.randn(num_features, num_classes)
#self.b = np.zeros((1,num_classes))
return sgd_optimizer.run(self.W, X, y, self.grad_loss_func)
def train_with_opt(self, optimizer, X, y, num_features, num_classes):
"""
X is assumed to be (num_rows, num_features)
y is assumed to be multiclass, values can be from [0, num_classes-1]
"""
num_rows = X.shape[0]
self.W = 0.01 * np.random.randn(num_features, num_classes)
#self.b = np.zeros((1,num_classes))
return optimizer.run(self.W, X, y, self.grad_loss_func)
def grad_loss_func(self, W, X, y, reg):
# X.shape == (num_rows, num_features), W.shape == (num_features, num_classes)
num_rows = X.shape[0]
Z = safe_sparse_dot(X, W)
#+ b # (num_rows, num_classes)
#M = np.max(Z, axis=1, keepdims=True)
#denom_logsumexp = np.sum(np.exp(Z - M), axis=1, keepdims=True)
#probs = np.exp(Z-M)/ denom_logsumexp
exp_scores = np.exp(Z)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
correct_logprobs = -np.log(probs[np.arange(num_rows),y])
data_loss = np.sum(correct_logprobs)/num_rows # -log(p(y|x))
reg_loss = 0.5*reg*np.sum(W*W)
loss = data_loss + reg_loss
grad = probs # (num_rows, num_classes)
grad[np.arange(num_rows),y] -= 1
grad /= num_rows
dW = safe_sparse_dot(X.T, grad) # (num_features, num_classes)
#db = np.sum(grad, axis=0, keepdims=True) # (1, num_classes)
dW += reg*W
return loss, dW
#, db
def predict_proba(self, X):
#X_arr = X.toarray() if sps.issparse(X) else X
Z = safe_sparse_dot(X, self.W)
#+ self.b # (num_rows, num_classes)
exp_scores = np.exp(Z)
probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
return probs
#M = np.max(Z, axis=1, keepdims=True)
#denom_logsumexp = np.sum(np.exp(Z - M), axis=1, keepdims=True)
#return np.exp(Z-M)/ denom_logsumexp