-
Notifications
You must be signed in to change notification settings - Fork 1
/
train.py
864 lines (763 loc) · 34.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
import argparse
import os
import sys
from datetime import datetime
import numpy as np
import torch
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
from models.votenet_iou_branch import VoteNet
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
sys.path.append(os.path.join(ROOT_DIR, 'pointnet2'))
sys.path.append(os.path.join(ROOT_DIR, 'models'))
from pointnet2.pytorch_utils import BNMomentumScheduler
from utils.tf_visualizer import Visualizer as TfVisualizer
from models.ap_helper import APCalculator, parse_predictions, parse_groundtruths
from models.loss_helper_labeled import get_labeled_loss
from models.loss_helper_unlabeled import get_unlabeled_loss
from models.loss_helper import compute_feature_consistency_loss, get_loss
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='votenet', help='Model file name.')
parser.add_argument('--dataset',
default='scannet',
help='Dataset name. sunrgbd or scannet.')
parser.add_argument(
'--labeled_sample_list',
default='scannetv2_train.txt',
help='Labeled sample list from a certain percentage of training [static]')
parser.add_argument('--detector_checkpoint', default='none')
parser.add_argument('--log_dir',
default='./temp',
help='Dump dir to save model checkpoint')
parser.add_argument('--num_point',
type=int,
default=40000,
help='Point Number')
parser.add_argument('--no_height',
action='store_true',
help='Do NOT use height signal in Votenet input.')
parser.add_argument('--use_color',
action='store_true',
help='Use RGB color in Votenet input.')
parser.add_argument('--use_sunrgbd_v2',
action='store_true',
help='Use V2 box labels for SUN RGB-D dataset')
parser.add_argument('--num_target',
type=int,
default=128,
help='Proposal number')
parser.add_argument('--vote_factor', type=int, default=1, help='Vote factor')
parser.add_argument(
'--cluster_sampling',
default='seed_fps',
help='Sampling strategy for vote clusters: vote_fps, seed_fps, random')
parser.add_argument('--ap_iou_thresh',
type=float,
default=0.25,
help='AP IoU threshold')
parser.add_argument('--max_epoch', type=int, default=1001, help='Epoch to run')
parser.add_argument('--batch_size',
default='4,8',
help='Batch Size during training, labeled + unlabeled')
parser.add_argument('--learning_rate',
type=float,
default=0.002,
help='Initial learning rate')
parser.add_argument('--weight_decay',
type=float,
default=0,
help='Optimization L2 weight decay')
parser.add_argument('--bn_decay_step',
type=int,
default=20,
help='Period of BN decay (in epochs)')
parser.add_argument('--bn_decay_rate',
type=float,
default=0.5,
help='Decay rate for BN decay')
parser.add_argument('--lr_decay_steps',
default='400, 600, 800, 900',
help='When to decay the learning rate (in epochs)')
parser.add_argument('--lr_decay_rates',
default='0.3, 0.3, 0.1, 0.1',
help='Decay rates for lr decay')
parser.add_argument('--ema_decay',
type=float,
default=0.999,
metavar='ALPHA',
help='ema variable decay rate')
parser.add_argument('--unlabeled_loss_weight',
type=float,
default=2.0,
metavar='WEIGHT',
help='use unlabeled loss with given weight')
parser.add_argument('--use_iou_for_nms',
action='store_true',
help='whether use iou to guide test-time nms')
parser.add_argument('--print_interval',
type=int,
default=25,
help='batch interval to print loss')
parser.add_argument('--eval_interval',
type=int,
default=25,
help='epoch interval to evaluate model')
parser.add_argument('--save_interval',
type=int,
default=200,
help='epoch interval to save model')
parser.add_argument('--base_weight', type=float, default=0.001)
parser.add_argument(
'--resume',
action='store_true',
help='resume training instead of just loading a pre-train model')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--conf_thresh', type=float, default=0.05)
parser.add_argument('--view_stats', action='store_true')
parser.add_argument('--opt_rate',
type=float,
default=5e-4,
help='Optimization rate for eval with opt')
parser.add_argument('--opt_step',
type=int,
default=0,
help='Optimization step for eval with opt')
parser.add_argument('--num_workers', type=int, default=-1)
parser.add_argument('--features_consistency_obj_threshold',
type=float,
default=0.9)
parser.add_argument('--align_features',
type=str,
default='all',
choices=['conv0', 'conv2', 'all'])
parser.add_argument('--apply_consistency', action='store_true')
FLAGS = parser.parse_args()
print(FLAGS)
# ------------------------------------------------------------------------- GLOBAL CONFIG BEG
print(
'\n************************** GLOBAL CONFIG BEG **************************'
)
batch_size_list = [int(x) for x in FLAGS.batch_size.split(',')]
BATCH_SIZE = batch_size_list[0] + batch_size_list[1]
NUM_POINT = FLAGS.num_point
MAX_EPOCH = FLAGS.max_epoch
BASE_LEARNING_RATE = FLAGS.learning_rate
BN_DECAY_STEP = FLAGS.bn_decay_step
BN_DECAY_RATE = FLAGS.bn_decay_rate
LR_DECAY_STEPS = [int(x) for x in FLAGS.lr_decay_steps.split(',')]
LR_DECAY_RATES = [float(x) for x in FLAGS.lr_decay_rates.split(',')]
assert (len(LR_DECAY_STEPS) == len(LR_DECAY_RATES))
LOG_DIR = FLAGS.log_dir
if not os.path.exists(LOG_DIR):
os.mkdir(LOG_DIR)
LOG_FOUT = open(os.path.join(LOG_DIR, 'log_train.txt'), 'a')
LOG_FOUT.write(str(FLAGS) + '\n')
if not FLAGS.eval:
PERFORMANCE_FOUT = open(os.path.join(LOG_DIR, 'best.txt'), 'w')
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
DIFFICULTY_SELECTED_NUM = 4
# Init datasets and dataloaders
if FLAGS.dataset == 'sunrgbd':
sys.path.append(os.path.join(ROOT_DIR, 'sunrgbd'))
from sunrgbd.sunrgbd_detection_dataset import SunrgbdDetectionVotesDataset
from sunrgbd.sunrgbd_ssl_dataset import SunrgbdSSLLabeledDataset, SunrgbdSSLUnlabeledDataset
from sunrgbd.model_util_sunrgbd import SunrgbdDatasetConfig
DATASET_CONFIG = SunrgbdDatasetConfig()
LABELED_DATASET = SunrgbdSSLLabeledDataset(
labeled_sample_list=FLAGS.labeled_sample_list,
num_points=NUM_POINT,
augment=True,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height),
use_v1=(not FLAGS.use_sunrgbd_v2))
UNLABELED_DATASET = SunrgbdSSLUnlabeledDataset(
labeled_sample_list=FLAGS.labeled_sample_list,
num_points=NUM_POINT,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height),
use_v1=(not FLAGS.use_sunrgbd_v2),
load_labels=FLAGS.view_stats,
augment=True)
TEST_DATASET = SunrgbdDetectionVotesDataset(
'val',
num_points=NUM_POINT,
augment=False,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height),
use_v1=(not FLAGS.use_sunrgbd_v2))
elif FLAGS.dataset == 'scannet':
sys.path.append(os.path.join(ROOT_DIR, 'scannet'))
from scannet.scannet_detection_dataset import ScannetDetectionDataset
from scannet.scannet_ssl_dataset import ScannetSSLLabeledDataset, ScannetSSLUnlabeledDataset
from scannet.model_util_scannet import ScannetDatasetConfig
DATASET_CONFIG = ScannetDatasetConfig()
LABELED_DATASET = ScannetSSLLabeledDataset(
labeled_sample_list=FLAGS.labeled_sample_list,
num_points=NUM_POINT,
augment=True,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height))
UNLABELED_DATASET = ScannetSSLUnlabeledDataset(
labeled_sample_list=FLAGS.labeled_sample_list,
num_points=NUM_POINT,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height),
load_labels=FLAGS.view_stats,
augment=True)
TEST_DATASET = ScannetDetectionDataset('val',
num_points=NUM_POINT,
augment=False,
use_color=FLAGS.use_color,
use_height=(not FLAGS.no_height))
else:
raise ValueError('Unknown dataset {}.'.format(FLAGS.dataset))
log_string('Dataset sizes: labeled-{0}; unlabeled-{1}; VALID-{2}'.format(
len(LABELED_DATASET), len(UNLABELED_DATASET), len(TEST_DATASET)))
if FLAGS.num_workers == -1:
LABELED_DATALOADER = DataLoader(LABELED_DATASET,
batch_size=batch_size_list[0],
shuffle=True,
num_workers=batch_size_list[0],
worker_init_fn=my_worker_init_fn)
UNLABELED_DATALOADER = DataLoader(UNLABELED_DATASET,
batch_size=batch_size_list[1],
shuffle=True,
num_workers=batch_size_list[1] // 2,
worker_init_fn=my_worker_init_fn)
TEST_DATALOADER = DataLoader(TEST_DATASET,
batch_size=8,
shuffle=False,
num_workers=4,
worker_init_fn=my_worker_init_fn)
else:
LABELED_DATALOADER = DataLoader(LABELED_DATASET,
batch_size=batch_size_list[0],
shuffle=True,
num_workers=FLAGS.num_workers,
worker_init_fn=my_worker_init_fn)
UNLABELED_DATALOADER = DataLoader(UNLABELED_DATASET,
batch_size=batch_size_list[1],
shuffle=True,
num_workers=FLAGS.num_workers,
worker_init_fn=my_worker_init_fn)
TEST_DATALOADER = DataLoader(TEST_DATASET,
batch_size=8,
shuffle=False,
num_workers=FLAGS.num_workers,
worker_init_fn=my_worker_init_fn)
def create_model(ema=False):
model = VoteNet(num_class=DATASET_CONFIG.num_class,
num_heading_bin=DATASET_CONFIG.num_heading_bin,
num_size_cluster=DATASET_CONFIG.num_size_cluster,
mean_size_arr=DATASET_CONFIG.mean_size_arr,
dataset_config=DATASET_CONFIG,
num_proposal=FLAGS.num_target,
input_feature_dim=num_input_channel,
vote_factor=FLAGS.vote_factor,
sampling=FLAGS.cluster_sampling)
if ema:
for param in model.parameters():
param.detach_()
return model
def get_consistency_weight(epoch):
base_weight = FLAGS.base_weight
for i, lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
base_weight *= 2
return base_weight
def set_flooding(x, thres=0.0001):
return torch.abs(x - thres) + thres
num_input_channel = int(FLAGS.use_color) * 3 + int(not FLAGS.no_height) * 1
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
detector = create_model()
ema_detector = create_model(ema=True)
if torch.cuda.device_count() > 1:
log_string("Let's use %d GPUs!" % (torch.cuda.device_count()))
# dim = 0 [30, xxx] -> [10, ...], [10, ...], [10, ...] on 3 GPUs
detector = nn.DataParallel(detector)
ema_detector = nn.DataParallel(ema_detector)
detector.to(device)
ema_detector.to(device)
train_labeled_criterion = get_labeled_loss
train_unlabeled_criterion = get_unlabeled_loss
test_detector_criterion = get_loss
# Load the Adam optimizer
optimizer = optim.Adam(detector.parameters(),
lr=BASE_LEARNING_RATE,
weight_decay=FLAGS.weight_decay)
# Load checkpoint if there is any
if FLAGS.detector_checkpoint is not None and os.path.isfile(
FLAGS.detector_checkpoint):
checkpoint = torch.load(FLAGS.detector_checkpoint)
pretrained_dict = checkpoint['model_state_dict']
########
model_dict = detector.state_dict()
# 1. filter out unnecessary keys
pretrained_dict = {
k: v
for k, v in pretrained_dict.items() if k in model_dict
}
# 2. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
# 3. load the new state dict
detector.load_state_dict(model_dict)
model_dict = ema_detector.state_dict()
model_dict.update(pretrained_dict)
ema_detector.load_state_dict(model_dict)
########
if FLAGS.resume:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch']
# detector.load_state_dict(pretrained_dict)
# ema_detector.load_state_dict(pretrained_dict)
epoch_ckpt = checkpoint['epoch']
print("Loaded votenet checkpoint %s (epoch: %d)" %
(FLAGS.detector_checkpoint, epoch_ckpt))
# Decay Batchnorm momentum from 0.5 to 0.999
# note: pytorch's BN momentum (default 0.1)= 1 - tensorflow's BN momentum
# inherited this from VoteNet and SESS
BN_MOMENTUM_INIT = 0.5
BN_MOMENTUM_MAX = 0.001
bn_lbmd = lambda it: max(
BN_MOMENTUM_INIT * BN_DECAY_RATE**
(int(it / BN_DECAY_STEP)), BN_MOMENTUM_MAX)
bnm_scheduler = BNMomentumScheduler(detector, bn_lambda=bn_lbmd, last_epoch=-1)
if FLAGS.resume:
bnm_scheduler.step(start_epoch)
def get_current_lr(epoch):
# stairstep update
lr = BASE_LEARNING_RATE
for i, lr_decay_epoch in enumerate(LR_DECAY_STEPS):
if epoch >= lr_decay_epoch:
lr *= LR_DECAY_RATES[i]
return lr
def adjust_learning_rate(optimizer, epoch):
lr = get_current_lr(epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
# TFBoard Visualizers
TRAIN_VISUALIZER = TfVisualizer(LOG_DIR, 'train')
TEST_VISUALIZER = TfVisualizer(LOG_DIR, 'test')
# Used for Pseudo box generation and AP calculation
CONFIG_DICT = {
'dataset_config': DATASET_CONFIG,
'unlabeled_batch_size': batch_size_list[1],
'dataset': FLAGS.dataset,
'remove_empty_box': False,
'use_3d_nms': True,
'nms_iou': 0.25,
'use_old_type_nms': False,
'cls_nms': True,
'use_iou_for_nms': FLAGS.use_iou_for_nms,
'per_class_proposal': True,
'conf_thresh': FLAGS.conf_thresh,
'obj_threshold': 0.9,
'cls_threshold': 0.9,
'features_consistency_obj_threshold':
FLAGS.features_consistency_obj_threshold,
'align_features': FLAGS.align_features,
'use_lhs': True,
'iou_threshold': 0.25,
'use_unlabeled_obj_loss': False,
'use_unlabeled_vote_loss': False,
'vote_loss_size_factor': 1.0,
'samecls_match': False,
'view_stats': FLAGS.view_stats
}
for key in CONFIG_DICT.keys():
if key != 'dataset_config':
log_string(key + ': ' + str(CONFIG_DICT[key]))
print(
'************************** GLOBAL CONFIG END **************************')
# ------------------------------------------------------------------------- GLOBAL CONFIG END
def update_ema_variables(model, ema_model, alpha, global_step):
# Use the true average until the exponential average is more correct
alpha = min(1 - 1 / (global_step + 1), alpha)
for ema_param, param in zip(ema_model.parameters(), model.parameters()):
ema_param.data.mul_(alpha).add_(1 - alpha, param.data)
def tb_name(key):
if 'loss' in key:
return 'loss/' + key
elif 'acc' in key:
return 'acc/' + key
elif 'ratio' in key:
return 'ratio/' + key
elif 'value' in key:
return 'value/' + key
else:
return 'other/' + key
def sigmoid_np(x):
return 1 / (1 + np.exp(-x))
def train_one_epoch(global_step):
stat_dict = {} # collect statistics
adjust_learning_rate(optimizer, EPOCH_CNT)
bnm_scheduler.step() # decay BN momentum
detector.train() # set model to training mode
ema_detector.train()
unlabeled_dataloader_iterator = iter(UNLABELED_DATALOADER)
res_each_epoch_labeled = {
'teacher_num': np.zeros(DATASET_CONFIG.num_class),
'student_num': np.zeros(DATASET_CONFIG.num_class),
'teacher_loss_sum': np.zeros(DATASET_CONFIG.num_class),
'student_loss_sum': np.zeros(DATASET_CONFIG.num_class)
}
res_each_epoch_unlabeled = {
'teacher_num': np.zeros(DATASET_CONFIG.num_class),
'student_num': np.zeros(DATASET_CONFIG.num_class),
'teacher_loss_sum': np.zeros(DATASET_CONFIG.num_class),
'student_loss_sum': np.zeros(DATASET_CONFIG.num_class)
}
for batch_idx, batch_data_label in enumerate(LABELED_DATALOADER):
try:
batch_data_unlabeled = next(unlabeled_dataloader_iterator)
except StopIteration:
unlabeled_dataloader_iterator = iter(UNLABELED_DATALOADER)
batch_data_unlabeled = next(unlabeled_dataloader_iterator)
for key in batch_data_unlabeled:
if type(batch_data_unlabeled[key]) == list:
batch_data_label[key] = torch.cat([batch_data_label[key]] +
batch_data_unlabeled[key],
dim=0) #.to(device)
else:
batch_data_label[key] = torch.cat(
(batch_data_label[key], batch_data_unlabeled[key]),
dim=0) #.to(device)
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
inputs = {'point_clouds': batch_data_label['point_clouds']}
ema_inputs = {'point_clouds': batch_data_label['ema_point_clouds']}
optimizer.zero_grad()
end_points = detector.forward_with_pred_jitter(inputs)
sa1_inds, sa2_inds, sa3_inds, sa4_inds, vote_inds = end_points['sa1_inds'], \
end_points['sa2_inds'], \
end_points['sa3_inds'], \
end_points['sa4_inds'], \
end_points['aggregated_vote_inds']
with torch.no_grad():
ema_end_points = ema_detector.forward_with_pred_jitter(ema_inputs)
ema_end_points_static = ema_detector.forward_with_pred_jitter(
inputs,
sa1_inds=sa1_inds,
sa2_inds=sa2_inds,
sa3_inds=sa3_inds,
sa4_inds=sa4_inds,
vote_inds=vote_inds)
# Compute loss and gradients, update parameters.
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
detection_loss, end_points = train_labeled_criterion(
end_points, DATASET_CONFIG, CONFIG_DICT)
unlabeled_loss, end_points = train_unlabeled_criterion(
end_points, ema_end_points, DATASET_CONFIG, CONFIG_DICT)
features_consistency_loss = compute_feature_consistency_loss(
end_points=end_points,
ema_end_points=ema_end_points_static,
cfg=CONFIG_DICT)
consistency_weight = get_consistency_weight(EPOCH_CNT)
loss = detection_loss + unlabeled_loss * FLAGS.unlabeled_loss_weight + features_consistency_loss * consistency_weight
end_points['loss'] = loss
loss.backward()
optimizer.step()
global_step += 1
update_ema_variables(detector, ema_detector, FLAGS.ema_decay,
global_step)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key or 'value' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
batch_interval = FLAGS.print_interval
if (batch_idx + 1) % batch_interval == 0:
log_string(' ---- batch: %03d ----' % (batch_idx + 1))
TRAIN_VISUALIZER.log_scalars(
{
tb_name(key): stat_dict[key] / batch_interval
for key in stat_dict
},
(EPOCH_CNT * len(LABELED_DATALOADER) + batch_idx) * BATCH_SIZE)
for key in sorted(stat_dict.keys()):
log_string('mean %s: %f' %
(key, stat_dict[key] / batch_interval))
stat_dict[key] = 0
if EPOCH_CNT < 500:
new_category_list = np.arange(DATASET_CONFIG.num_class)
tem = res_each_epoch_labeled[
'teacher_loss_sum'] / res_each_epoch_labeled['teacher_num']
tem_norm = (tem - tem.min()) / (tem.max() - tem.min())
base_category_prob = sigmoid_np(3 * (tem_norm - tem_norm.mean()))
else:
new_category_list = np.arange(DATASET_CONFIG.num_class)
base_category_prob = np.ones(DATASET_CONFIG.num_class)
new_category_list = np.concatenate([new_category_list, new_category_list])
np.random.shuffle(new_category_list)
category_prob = np.array(
[base_category_prob[x] for x in new_category_list])
LABELED_DATASET.category_list = new_category_list
LABELED_DATASET.category_prob = category_prob
return global_step
AP_IOU_THRESHOLDS = [0.25, 0.5]
BEST_MAP = [0.0, 0.0]
def evaluate_one_epoch():
stat_dict = {} # collect statistics
ap_calculator_list = [
APCalculator(iou_thresh, DATASET_CONFIG.class2type)
for iou_thresh in AP_IOU_THRESHOLDS
]
detector.eval() # set model to eval mode (for bn and dp)
for batch_idx, batch_data_label in enumerate(TEST_DATALOADER):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
with torch.no_grad():
end_points = detector(inputs)
# Compute loss
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = test_detector_criterion(end_points, DATASET_CONFIG)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key or 'value' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
# Log statistics
TEST_VISUALIZER.log_scalars(
{
tb_name(key): stat_dict[key] / float(batch_idx + 1)
for key in stat_dict
}, (EPOCH_CNT + 1) * len(LABELED_DATALOADER) * BATCH_SIZE)
for key in sorted(stat_dict.keys()):
log_string('eval mean %s: %f' % (key, stat_dict[key] /
(float(batch_idx + 1))))
# Evaluate average precision
map = []
for i, ap_calculator in enumerate(ap_calculator_list):
print('-' * 10, 'iou_thresh: %f' % (AP_IOU_THRESHOLDS[i]), '-' * 10)
metrics_dict = ap_calculator.compute_metrics()
for key in metrics_dict:
log_string('eval %s: %f' % (key, metrics_dict[key]))
TEST_VISUALIZER.log_scalars(
{
'metrics_' + str(AP_IOU_THRESHOLDS[i]) + '/' + key:
metrics_dict[key]
for key in metrics_dict if key in ['mAP', 'AR']
}, (EPOCH_CNT + 1) * len(LABELED_DATALOADER) * BATCH_SIZE)
map.append(metrics_dict['mAP'])
mean_loss = stat_dict['detection_loss'] / float(batch_idx + 1)
return mean_loss, map
def evaluate_with_opt():
stat_dict = {} # collect statistics
ap_calculator_list = [APCalculator(iou_thresh, DATASET_CONFIG.class2type) \
for iou_thresh in AP_IOU_THRESHOLDS]
detector.eval() # set model to eval mode (for bn and dp)
for batch_idx, batch_data_label in enumerate(TEST_DATALOADER):
for key in batch_data_label:
batch_data_label[key] = batch_data_label[key].to(device)
# Forward pass
inputs = {'point_clouds': batch_data_label['point_clouds']}
optimizer.zero_grad()
end_points = detector(inputs, iou_opt=True)
center = end_points['center']
size_class = torch.argmax(end_points['size_scores'], dim=-1)
sem_cls = end_points['sem_cls_scores'].argmax(-1)
size = end_points['size']
heading = end_points['heading']
iou = end_points['iou_scores']
origin_iou = iou.clone()
iou_gathered = torch.gather(
iou, dim=2, index=sem_cls.unsqueeze(-1).detach()).squeeze(
-1).contiguous().view(-1)
iou_gathered.backward(torch.ones(iou_gathered.shape).cuda())
# max_iou = iou_gathered.view(center.shape[:2])
center_grad = center.grad
size_grad = size.grad
mask = torch.ones(center.shape).cuda()
count = 0
for k in end_points.keys():
end_points[k] = end_points[k].detach()
while True:
center_ = center.detach() + FLAGS.opt_rate * center_grad * mask
size_ = size.detach() + FLAGS.opt_rate * size_grad * mask
heading_ = heading.detach()
optimizer.zero_grad()
center_.requires_grad = True
size_.requires_grad = True
end_points_ = detector.forward_onlyiou_faster(
end_points, center_, size_, heading_)
iou = end_points_['iou_scores']
iou_gathered = torch.gather(
iou, dim=2, index=sem_cls.unsqueeze(-1).detach()).squeeze(
-1).contiguous().view(-1)
iou_gathered.backward(torch.ones(iou_gathered.shape).cuda())
center_grad = center_.grad
size_grad = size_.grad
# cur_iou = iou_gathered.view(center.shape[:2])
# mask[cur_iou < max_iou - 0.1] = 0
# mask[torch.abs(cur_iou - max_iou) < 0.001] = 0
# print(mask.sum().float() /mask.view(-1).shape[-1])
count += 1
if count > FLAGS.opt_step:
break
center = center_
size = size_
end_points['center'] = center_
B, K = size_class.shape[:2]
mean_size_arr = DATASET_CONFIG.mean_size_arr
mean_size_arr = torch.from_numpy(mean_size_arr.astype(
np.float32)).cuda() # (num_size_cluster,3)
size_base = torch.index_select(mean_size_arr, 0, size_class.view(-1))
size_base = size_base.view(B, K, 3)
end_points['size_residuals'] = (size_ * 2 -
size_base).unsqueeze(2).expand(
-1, -1,
DATASET_CONFIG.num_size_cluster,
-1)
optimizer.zero_grad()
# if FLAGS.first_nms:
# end_points['iou_scores'] = origin_iou
# Compute loss
for key in batch_data_label:
assert (key not in end_points)
end_points[key] = batch_data_label[key]
loss, end_points = test_detector_criterion(end_points, DATASET_CONFIG)
batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT)
batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT)
# Accumulate statistics and print out
for key in end_points:
if 'loss' in key or 'acc' in key or 'ratio' in key or 'value' in key:
if key not in stat_dict: stat_dict[key] = 0
stat_dict[key] += end_points[key].item()
# ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
for ap_calculator in ap_calculator_list:
ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
# Log statistics
TEST_VISUALIZER.log_scalars(
{
tb_name(key): stat_dict[key] / float(batch_idx + 1)
for key in stat_dict
}, (EPOCH_CNT + 1) * len(LABELED_DATALOADER) * BATCH_SIZE)
for key in sorted(stat_dict.keys()):
log_string('eval mean %s: %f' % (key, stat_dict[key] /
(float(batch_idx + 1))))
# Evaluate average precision
map = []
for i, ap_calculator in enumerate(ap_calculator_list):
print('-' * 10, 'iou_thresh: %f' % (AP_IOU_THRESHOLDS[i]), '-' * 10)
metrics_dict = ap_calculator.compute_metrics()
for key in metrics_dict:
log_string('eval %s: %f' % (key, metrics_dict[key]))
TEST_VISUALIZER.log_scalars(
{
'metrics_' + str(AP_IOU_THRESHOLDS[i]) + '/' + key:
metrics_dict[key]
for key in metrics_dict if key in ['mAP', 'AR']
}, (EPOCH_CNT + 1) * len(LABELED_DATALOADER) * BATCH_SIZE)
map.append(metrics_dict['mAP'])
mean_loss = stat_dict['detection_loss'] / float(batch_idx + 1)
return mean_loss, map
def train():
global EPOCH_CNT
global start_epoch
global_step = 0
loss = 0
EPOCH_CNT = 0
global BEST_MAP
if FLAGS.eval:
np.random.seed()
if FLAGS.opt_step > 0:
evaluate_with_opt()
else:
evaluate_one_epoch()
sys.exit(0)
start_from = 0
if FLAGS.resume:
start_from = start_epoch
for epoch in range(start_from, MAX_EPOCH):
EPOCH_CNT = epoch
log_string('\n**** EPOCH %03d, STEP %d ****' % (epoch, global_step))
log_string(
"Current epoch: %d, obj threshold = %.3f & cls threshold = %.3f" %
(epoch, CONFIG_DICT['obj_threshold'],
CONFIG_DICT['cls_threshold']))
log_string('Current learning rate: %f' % (get_current_lr(epoch)))
log_string('Current BN decay momentum: %f' %
(bnm_scheduler.lmbd(bnm_scheduler.last_epoch)))
log_string(str(datetime.now()))
# in numpy 1.18.5 this actually sets `np.random.get_state()[1][0]` to default value
# so the test data is consistent as the initial seed is the same
np.random.seed()
global_step = train_one_epoch(global_step)
map = 0.0
if EPOCH_CNT > 0 and EPOCH_CNT % FLAGS.eval_interval == 0:
loss, map = evaluate_one_epoch()
# save checkpoint
save_dict = {
'epoch': epoch +
1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = detector.module.state_dict()
save_dict['ema_model_state_dict'] = ema_detector.module.state_dict(
)
except:
save_dict['model_state_dict'] = detector.state_dict()
save_dict['ema_model_state_dict'] = ema_detector.state_dict()
torch.save(save_dict, os.path.join(LOG_DIR, 'checkpoint.tar'))
if EPOCH_CNT % FLAGS.save_interval == 0:
save_dict = {
'epoch': epoch +
1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = detector.module.state_dict()
save_dict[
'ema_model_state_dict'] = ema_detector.module.state_dict()
except:
save_dict['model_state_dict'] = detector.state_dict()
save_dict['ema_model_state_dict'] = ema_detector.state_dict()
torch.save(save_dict,
os.path.join(LOG_DIR, 'checkpoint_%d.tar' % EPOCH_CNT))
if EPOCH_CNT > 0 and EPOCH_CNT % FLAGS.eval_interval == 0:
if map[0] + map[1] > BEST_MAP[0] + BEST_MAP[1]:
BEST_MAP = map
save_dict = {
'epoch': epoch +
1, # after training one epoch, the start_epoch should be epoch+1
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss
}
try: # with nn.DataParallel() the net is added as a submodule of DataParallel
save_dict['model_state_dict'] = detector.module.state_dict(
)
save_dict[
'ema_model_state_dict'] = ema_detector.module.state_dict(
)
except:
save_dict['model_state_dict'] = detector.state_dict()
save_dict[
'ema_model_state_dict'] = ema_detector.state_dict()
torch.save(save_dict,
os.path.join(LOG_DIR, 'best_checkpoint_sum.tar'))
PERFORMANCE_FOUT.write('epoch: ' + str(EPOCH_CNT) + '\n' + \
'best: ' + str(BEST_MAP[0].item()) + ', ' + str(BEST_MAP[1].item()) + '\n')
PERFORMANCE_FOUT.flush()
if __name__ == '__main__':
train()