-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
57 lines (45 loc) · 1.67 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from dataset import VocalRemovalSong, VocalRemovalSongDataset
from model import Net
if __name__ == "__main__":
device = "cuda"
num_epochs = 1001
data_path = "data"
n_frames = 8
ds = VocalRemovalSongDataset(data_path, "cache", n_frames=n_frames)
loader = DataLoader(ds, batch_size=5, pin_memory=True, num_workers=2, shuffle=True)
model = Net().to(device)
# model.load_state_dict(torch.load("ckpt/model_e99.ckpt"))
optimizer = optim.Adam(model.parameters())
writer = SummaryWriter()
criterion = nn.L1Loss()
n_iters = 0
begin_epoch = 1
for epoch in range(begin_epoch, begin_epoch + num_epochs):
print(f"epoch = {epoch}")
for vocal, ins in loader:
n_iters += 1
# vocal = vocal[0]
# ins = ins[0]
# (b_size, n_frames, 513, 128)
b_size = vocal.size(0)
vocal = vocal.reshape(-1, 513, 128)
ins = ins.reshape(-1, 513, 128)
vocal.unsqueeze_(1)
ins.unsqueeze_(1)
vocal_gpu = vocal[:, :, 1:].to(device)
ins_gpu = ins[:, :, 1:].to(device)
optimizer.zero_grad()
preds = model(vocal_gpu)
loss = criterion(preds, ins_gpu)
writer.add_scalar("loss", loss, n_iters)
loss.backward()
optimizer.step()
if epoch % 25 == 0:
torch.save(model.state_dict(), f"ckpt/model_e{epoch}.ckpt")
torch.save(model.state_dict(), f"ckpt/model_e{epoch}.ckpt")