-
Notifications
You must be signed in to change notification settings - Fork 239
Using JUNG
JUNG is a software library that provides a common and extendible language for the modeling, analysis, and visualization of data that can be represented as a graph or network. It is written in Java, which allows JUNG-based applications to make use of the extensive built-in capabilities of the Java API, as well as those of other existing third-party Java libraries.
Its possible to make use of JUNG’s visualization and algorithm packages in Gremlin by means of GraphJung
. GraphJung
is a Blueprints class that takes any Blueprints Graph
and exposes it as JUNG graph.
Before using JUNG algorithms its important to import
the respective package you want to use from the JUNG API.
gremlin> import edu.uci.ics.jung.algorithms.scoring.PageRank
==>import com.tinkerpop.gremlin.*
==>import com.tinkerpop.gremlin.GremlinTokens.T
...
==>import edu.uci.ics.jung.algorithms.scoring.PageRank
Once the respective package has been imported (e.g. PageRank) its necessary to wrap the desired Blueprints graph into a GraphJung
and create and instance of the algorithm. For the examples in this section, the graph diagrammed in Defining a Property Graph is used (i.e. TinkerGraphFactory.createTinkerGraph()
).
gremlin> g = new GraphJung(TinkerGraphFactory.createTinkerGraph());
==>graphjung[tinkergraph[vertices:6 edges:6]]
gremlin> pr = new PageRank<Vertex,Edge>(g, 0.15d)
==>edu.uci.ics.jung.algorithms.scoring.PageRank@34b6a6d6
Now its possible to evaluate the algorithm.
gremlin> pr.evaluate()
==>null
gremlin> g.getVertices().collect{ [it, pr.getVertexScore(it)] }
==>[v[3], 0.30472082661863664]
==>[v[2], 0.14598540145985392]
==>[v[1], 0.11375485828040566]
==>[v[6], 0.11375485828040566]
==>[v[5], 0.1757986539008436]
==>[v[4], 0.14598540145985392]
Note that all edges are treated equally. That is, there is, with JUNG, you can not discriminate the calculation to traverse particular paths. The best that we can achieve with JUNG is to bias it with edge weights and filtered edge labels. In the example below, an EdgeLabelTransformer
is used to only allow the traverser to follow knows
edges in the graph. As such, besides the background alpha-probability, only vertices 2
and 4
get rank as they are the head of knows
edges.
gremlin> t = new EdgeLabelTransformer(['knows'] as Set, false, 0, false)
gremlin> pr = new PageRank<Vertex,Edge>(g, t, 0.15d)
gremlin> pr.evaluate()
gremlin> g.getVertices().collect{ [it, pr.getVertexScore(it)] }
==>[v[3], 0.05499541704857928]
==>[v[2], 0.10174152153987166]
==>[v[1], 0.05499541704857928]
==>[v[6], 0.05499541704857928]
==>[v[5], 0.05499541704857928]
==>[v[4], 0.10174152153987166]
JUNG has a rich set of classes for creating Swing based visualizations. You can make use of these classes from within Gremlin. For example, to render the visualization below, use the code that follows.
import java.awt.*
import javax.swing.*
import org.apache.commons.collections15.Transformer
import edu.uci.ics.jung.algorithms.layout.CircleLayout
import edu.uci.ics.jung.visualization.BasicVisualizationServer
g = new GraphJung(TinkerGraphFactory.createTinkerGraph());
layout = new CircleLayout<Vertex, Edge>(g);
layout.setSize(new Dimension(300, 300));
viz = new BasicVisualizationServer<Vertex, Edge>(layout);
viz.setPreferredSize(new Dimension(350, 350));
vertexLabelTransformer = new Transformer<Vertex, String>() {
public String transform(Vertex vertex) {
return (String) vertex.getProperty("name");
}
};
edgeLabelTransformer = new Transformer<Edge, String>() {
public String transform(Edge edge) {
return edge.getLabel();
}
};
viz.getRenderContext().setEdgeLabelTransformer(edgeLabelTransformer);
viz.getRenderContext().setVertexLabelTransformer(vertexLabelTransformer);
frame = new JFrame("TinkerPop");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(viz);
frame.pack();
frame.setVisible(true);