-
Notifications
You must be signed in to change notification settings - Fork 4
/
renderer_draw.go
307 lines (284 loc) · 8.81 KB
/
renderer_draw.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
package etxt
import (
"github.com/tinne26/etxt/fract"
)
// Draws the given text with the current configuration (font, size, color,
// target, etc). The text drawing position is determined by the given pixel
// coordinates and the renderer's align (see [Renderer.SetAlign]() rules).
//
// Missing glyphs in the current font will cause the renderer to panic.
// See [RendererGlyph.GetRuneIndex]() for further advice if you need to
// make your system more robust.
func (self *Renderer) Draw(target Target, text string, x, y int) {
self.fractDraw(target, text, fract.FromInt(x), fract.FromInt(y))
}
// x and y may be unquantized
func (self *Renderer) fractDraw(target Target, text string, x, y fract.Unit) {
// preconditions
if target == nil {
panic("can't draw on nil Target")
}
if self.state.activeFont == nil {
panic("can't draw text with nil font (tip: Renderer.SetFont())")
}
if self.state.fontSizer == nil {
panic("can't draw with a nil sizer (tip: NewRenderer())")
}
if self.state.rasterizer == nil {
panic("can't draw with a nil rasterizer (tip: NewRenderer())")
}
// return directly on superfluous invocations
if text == "" {
return
}
// adjust Y position
horzQuant, vertQuant := self.fractGetQuantization()
lineHeight := self.getOpLineHeight()
vertAlign := self.state.align.Vert()
switch vertAlign {
case Top:
y = (y + self.getOpAscent()).QuantizeUp(vertQuant)
case CapLine:
capHeight := self.getSlowOpCapHeight()
y = (y + capHeight).QuantizeUp(vertQuant)
case Midline:
xheight := self.getSlowOpXHeight()
y = (y + xheight).QuantizeUp(vertQuant)
case VertCenter:
height := self.helperMeasureHeight(text)
y = (y + self.getOpAscent() - (height >> 1)).QuantizeUp(vertQuant)
case Baseline:
y = y.QuantizeUp(vertQuant)
case LastBaseline:
height := self.helperMeasureHeight(text)
qtLineHeight := lineHeight.QuantizeUp(vertQuant)
if height >= qtLineHeight {
height -= qtLineHeight
}
y = (y - height).QuantizeUp(vertQuant)
case Bottom:
height := self.helperMeasureHeight(text)
y = (y + self.getOpAscent() - height).QuantizeUp(vertQuant)
default:
panic(vertAlign)
}
// Note: skipping text portions based on visibility can be a
// problem when using custom draw and line break functions,
// so I'm temporarily suspending the optimization
// skip non-visible portions of the text in the target
// (ascent and descent would be enough for most properly
// made fonts, but using line height is safer)
// minBaselineY := fract.FromInt(bounds.Min.Y) - lineHeight
// maxBaselineY := fract.FromInt(bounds.Max.Y) + lineHeight
// var lineBreakNth int = -1
// if y < minBaselineY {
// var iSkip int
// for i, codePoint := range text {
// if codePoint == '\n' {
// lineBreakNth = maxInt(1, lineBreakNth+1)
// lineBreakNth += 1
// y += self.getOpLineAdvance(lineBreakNth)
// y = y.QuantizeUp(vertQuant)
// iSkip = i + 1
// if y >= minBaselineY {
// break
// }
// }
// }
// text = text[iSkip:]
// if text == "" {
// return
// }
// }
// subdelegate to relevant draw function
switch self.state.align.Horz() {
case Left:
if self.state.textDirection == LeftToRight {
self.fractDrawLeftLTR(target, text, x.QuantizeUp(horzQuant), y)
} else {
self.fractDrawLeftRTL(target, text, x.QuantizeUp(horzQuant), y)
}
case Right:
if self.state.textDirection == LeftToRight {
self.fractDrawRightLTR(target, text, x.QuantizeUp(horzQuant), y)
} else {
self.fractDrawRightRTL(target, text, x.QuantizeUp(horzQuant), y)
}
case HorzCenter:
if self.state.textDirection == LeftToRight {
self.fractDrawCenterLTR(target, text, x, y)
} else {
self.fractDrawCenterRTL(target, text, x, y)
}
default:
panic(self.state.align.Horz())
}
}
// Precondition: x and y are already quantized.
func (self *Renderer) fractDrawLeftLTR(target Target, text string, x, y fract.Unit) {
position := fract.UnitsToPoint(x, y)
var iv drawInternalValues
iv.prevFractX = position.X.FractShift()
iv.lineBreakNth = -1
if self.cacheHandler != nil {
self.cacheHandler.NotifyFractChange(position)
}
var iterator ltrStringIterator
for {
codePoint := iterator.Next(text)
if codePoint == -1 {
break
}
if codePoint == '\n' {
iv.increaseLineBreakNth()
position = self.advanceLine(position, x, iv.lineBreakNth)
if self.lineChangeFn != nil {
self.lineChangeFn(iv.lineChangeDetails)
}
} else {
position, iv = self.drawRuneLTR(target, position, codePoint, iv)
}
}
}
// Precondition: x and y are already quantized.
func (self *Renderer) fractDrawLeftRTL(target Target, text string, x, y fract.Unit) {
position := fract.UnitsToPoint(x, y)
var iv drawInternalValues
iv.prevFractX = position.X.FractShift()
iv.lineBreakNth = -1
if self.cacheHandler != nil {
self.cacheHandler.NotifyFractChange(position)
}
var iterator rtlStringIterator
iterator.Init(text)
for {
codePoint := iterator.Next(text)
if codePoint == -1 {
break
}
if codePoint == '\n' {
iv.increaseLineBreakNth()
position = self.advanceLine(position, x, iv.lineBreakNth)
if self.lineChangeFn != nil {
self.lineChangeFn(iv.lineChangeDetails)
}
} else {
position, iv = self.drawRuneLTR(target, position, codePoint, iv)
}
}
}
// Precondition: x and y are already quantized.
func (self *Renderer) fractDrawRightLTR(target Target, text string, x, y fract.Unit) {
position := fract.UnitsToPoint(x, y)
var iv drawInternalValues
iv.prevFractX = position.X.FractShift()
iv.lineBreakNth = -1
if self.cacheHandler != nil {
self.cacheHandler.NotifyFractChange(position)
}
var iterator rtlStringIterator
iterator.Init(text)
for {
codePoint := iterator.Next(text)
if codePoint == -1 {
break
}
if codePoint == '\n' {
iv.increaseLineBreakNth()
position = self.advanceLine(position, x, iv.lineBreakNth)
if self.lineChangeFn != nil {
self.lineChangeFn(iv.lineChangeDetails)
}
} else {
position, iv = self.drawRuneRTL(target, position, codePoint, iv)
}
}
}
// Precondition: x and y are already quantized.
func (self *Renderer) fractDrawRightRTL(target Target, text string, x, y fract.Unit) {
position := fract.UnitsToPoint(x, y)
var iv drawInternalValues
iv.prevFractX = position.X.FractShift()
iv.lineBreakNth = -1
if self.cacheHandler != nil {
self.cacheHandler.NotifyFractChange(position)
}
var iterator ltrStringIterator
for {
codePoint := iterator.Next(text)
if codePoint == -1 {
break
}
if codePoint == '\n' {
iv.increaseLineBreakNth()
position = self.advanceLine(position, x, iv.lineBreakNth)
if self.lineChangeFn != nil {
self.lineChangeFn(iv.lineChangeDetails)
}
} else {
position, iv = self.drawRuneRTL(target, position, codePoint, iv)
}
}
}
// Precondition: y is already quantized, x is not (for better precision).
func (self *Renderer) fractDrawCenterLTR(target Target, text string, x, y fract.Unit) {
position := fract.UnitsToPoint(x, y)
var iv drawInternalValues
iv.prevFractX = x.FractShift()
iv.lineBreakNth = -1
if self.cacheHandler != nil {
self.cacheHandler.NotifyFractChange(position)
}
var iterator ltrStringIterator
for {
codePoint := iterator.PeekNext(text)
if codePoint == -1 {
break
} // we are done
if codePoint == '\n' { // deal with line breaks
_ = iterator.Next(text) // consume line break
iv.increaseLineBreakNth()
position = self.advanceLine(position, x, iv.lineBreakNth)
if self.lineChangeFn != nil {
self.lineChangeFn(iv.lineChangeDetails)
}
continue
}
_, lineWidth, runeCount, _ := self.helperMeasureLineLTR(iterator, text)
position.X = x - (lineWidth >> 1)
_, iv, iterator = self.helperDrawLineLTR(target, position, iv, iterator, text, runeCount)
}
}
// Precondition: y is already quantized, x is not (for better precision).
func (self *Renderer) fractDrawCenterRTL(target Target, text string, x, y fract.Unit) {
// There are multiple approaches here:
// - iterate text from left to right, but measure and draw in reverse
// - iterate from right to left, but measure and draw normally
// The first is slightly nicer due to ltr iterator being simpler
position := fract.UnitsToPoint(x, y)
var iv drawInternalValues
iv.prevFractX = x.FractShift()
iv.lineBreakNth = -1
if self.cacheHandler != nil {
self.cacheHandler.NotifyFractChange(position)
}
var iterator ltrStringIterator
for {
codePoint := iterator.PeekNext(text)
if codePoint == -1 {
break
} // we are done
if codePoint == '\n' { // deal with line breaks
_ = iterator.Next(text) // consume line break
iv.increaseLineBreakNth()
position = self.advanceLine(position, x, iv.lineBreakNth)
if self.lineChangeFn != nil {
self.lineChangeFn(iv.lineChangeDetails)
}
continue
}
_, lineWidth, runeCount, _ := self.helperMeasureLineReverseLTR(iterator, text)
position.X = x + (lineWidth >> 1)
_, iv, iterator = self.helperDrawLineReverseLTR(target, position, iv, iterator, text, runeCount)
}
}