forked from apache/datafusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcsv.rs
527 lines (481 loc) · 16.4 KB
/
csv.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
//! Execution plan for reading CSV files
use crate::error::{DataFusionError, Result};
use crate::physical_plan::ExecutionPlan;
use crate::physical_plan::{common, source::Source, Partitioning};
use arrow::csv;
use arrow::datatypes::{Schema, SchemaRef};
use arrow::error::Result as ArrowResult;
use arrow::record_batch::RecordBatch;
use futures::Stream;
use std::any::Any;
use std::fs::File;
use std::io::Read;
use std::pin::Pin;
use std::sync::Arc;
use std::sync::Mutex;
use std::task::{Context, Poll};
use super::{DisplayFormatType, RecordBatchStream, SendableRecordBatchStream};
use async_trait::async_trait;
/// CSV file read option
#[derive(Copy, Clone)]
pub struct CsvReadOptions<'a> {
/// Does the CSV file have a header?
///
/// If schema inference is run on a file with no headers, default column names
/// are created.
pub has_header: bool,
/// An optional column delimiter. Defaults to `b','`.
pub delimiter: u8,
/// An optional schema representing the CSV files. If None, CSV reader will try to infer it
/// based on data in file.
pub schema: Option<&'a Schema>,
/// Max number of rows to read from CSV files for schema inference if needed. Defaults to 1000.
pub schema_infer_max_records: usize,
/// File extension; only files with this extension are selected for data input.
/// Defaults to ".csv".
pub file_extension: &'a str,
}
impl<'a> CsvReadOptions<'a> {
/// Create a CSV read option with default presets
pub fn new() -> Self {
Self {
has_header: true,
schema: None,
schema_infer_max_records: 1000,
delimiter: b',',
file_extension: ".csv",
}
}
/// Configure has_header setting
pub fn has_header(mut self, has_header: bool) -> Self {
self.has_header = has_header;
self
}
/// Specify delimiter to use for CSV read
pub fn delimiter(mut self, delimiter: u8) -> Self {
self.delimiter = delimiter;
self
}
/// Specify the file extension for CSV file selection
pub fn file_extension(mut self, file_extension: &'a str) -> Self {
self.file_extension = file_extension;
self
}
/// Configure delimiter setting with Option, None value will be ignored
pub fn delimiter_option(mut self, delimiter: Option<u8>) -> Self {
if let Some(d) = delimiter {
self.delimiter = d;
}
self
}
/// Specify schema to use for CSV read
pub fn schema(mut self, schema: &'a Schema) -> Self {
self.schema = Some(schema);
self
}
/// Configure number of max records to read for schema inference
pub fn schema_infer_max_records(mut self, max_records: usize) -> Self {
self.schema_infer_max_records = max_records;
self
}
}
/// Execution plan for scanning a CSV file
#[derive(Debug, Clone)]
pub struct CsvExec {
/// Where the data comes from.
source: Source,
/// Schema representing the CSV file
schema: SchemaRef,
/// Does the CSV file have a header?
has_header: bool,
/// An optional column delimiter. Defaults to `b','`
delimiter: Option<u8>,
/// File extension
file_extension: String,
/// Optional projection for which columns to load
projection: Option<Vec<usize>>,
/// Schema after the projection has been applied
projected_schema: SchemaRef,
/// Batch size
batch_size: usize,
/// Limit in nr. of rows
limit: Option<usize>,
}
impl CsvExec {
/// Create a new execution plan for reading a set of CSV files
pub fn try_new(
path: &str,
options: CsvReadOptions,
projection: Option<Vec<usize>>,
batch_size: usize,
limit: Option<usize>,
) -> Result<Self> {
let file_extension = String::from(options.file_extension);
let filenames = common::build_file_list(path, file_extension.as_str())?;
if filenames.is_empty() {
return Err(DataFusionError::Execution(format!(
"No files found at {path} with file extension {file_extension}",
path = path,
file_extension = file_extension.as_str()
)));
}
let schema = match options.schema {
Some(s) => s.clone(),
None => CsvExec::try_infer_schema(&filenames, &options)?,
};
let projected_schema = match &projection {
None => schema.clone(),
Some(p) => Schema::new(p.iter().map(|i| schema.field(*i).clone()).collect()),
};
Ok(Self {
source: Source::PartitionedFiles {
path: path.to_string(),
filenames,
},
schema: Arc::new(schema),
has_header: options.has_header,
delimiter: Some(options.delimiter),
file_extension,
projection,
projected_schema: Arc::new(projected_schema),
batch_size,
limit,
})
}
/// Create a new execution plan for reading from a reader
pub fn try_new_from_reader(
reader: impl Read + Send + Sync + 'static,
options: CsvReadOptions,
projection: Option<Vec<usize>>,
batch_size: usize,
limit: Option<usize>,
) -> Result<Self> {
let schema = match options.schema {
Some(s) => s.clone(),
None => {
return Err(DataFusionError::Execution(
"The schema must be provided in options when reading from a reader"
.to_string(),
));
}
};
let projected_schema = match &projection {
None => schema.clone(),
Some(p) => Schema::new(p.iter().map(|i| schema.field(*i).clone()).collect()),
};
Ok(Self {
source: Source::Reader(Mutex::new(Some(Box::new(reader)))),
schema: Arc::new(schema),
has_header: options.has_header,
delimiter: Some(options.delimiter),
file_extension: String::new(),
projection,
projected_schema: Arc::new(projected_schema),
batch_size,
limit,
})
}
/// Path to directory containing partitioned CSV files with the same schema
pub fn path(&self) -> &str {
self.source.path()
}
/// The individual files under path
pub fn filenames(&self) -> &[String] {
self.source.filenames()
}
/// Does the CSV file have a header?
pub fn has_header(&self) -> bool {
self.has_header
}
/// An optional column delimiter. Defaults to `b','`
pub fn delimiter(&self) -> Option<&u8> {
self.delimiter.as_ref()
}
/// File extension
pub fn file_extension(&self) -> &str {
&self.file_extension
}
/// Get the schema of the CSV file
pub fn file_schema(&self) -> SchemaRef {
self.schema.clone()
}
/// Optional projection for which columns to load
pub fn projection(&self) -> Option<&Vec<usize>> {
self.projection.as_ref()
}
/// Batch size
pub fn batch_size(&self) -> usize {
self.batch_size
}
/// Limit
pub fn limit(&self) -> Option<usize> {
self.limit
}
/// Infer schema for given CSV dataset
pub fn try_infer_schema(
filenames: &[String],
options: &CsvReadOptions,
) -> Result<Schema> {
Ok(csv::infer_schema_from_files(
filenames,
options.delimiter,
Some(options.schema_infer_max_records),
options.has_header,
)?)
}
}
#[async_trait]
impl ExecutionPlan for CsvExec {
/// Return a reference to Any that can be used for downcasting
fn as_any(&self) -> &dyn Any {
self
}
/// Get the schema for this execution plan
fn schema(&self) -> SchemaRef {
self.projected_schema.clone()
}
/// Get the output partitioning of this plan
fn output_partitioning(&self) -> Partitioning {
Partitioning::UnknownPartitioning(match &self.source {
Source::PartitionedFiles { filenames, .. } => filenames.len(),
Source::Reader(_) => 1,
})
}
fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
// this is a leaf node and has no children
vec![]
}
fn with_new_children(
&self,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> Result<Arc<dyn ExecutionPlan>> {
if children.is_empty() {
Ok(Arc::new(self.clone()))
} else {
Err(DataFusionError::Internal(format!(
"Children cannot be replaced in {:?}",
self
)))
}
}
async fn execute(&self, partition: usize) -> Result<SendableRecordBatchStream> {
match &self.source {
Source::PartitionedFiles { filenames, .. } => {
Ok(Box::pin(CsvStream::try_new(
&filenames[partition],
self.schema.clone(),
self.has_header,
self.delimiter,
&self.projection,
self.batch_size,
self.limit,
)?))
}
Source::Reader(rdr) => {
if partition != 0 {
Err(DataFusionError::Internal(
"Only partition 0 is valid when CSV comes from a reader"
.to_string(),
))
} else if let Some(rdr) = rdr.lock().unwrap().take() {
Ok(Box::pin(CsvStream::try_new_from_reader(
rdr,
self.schema.clone(),
self.has_header,
self.delimiter,
&self.projection,
self.batch_size,
self.limit,
)?))
} else {
Err(DataFusionError::Execution(
"Error reading CSV: Data can only be read a single time when the source is a reader"
.to_string(),
))
}
}
}
}
fn fmt_as(
&self,
t: DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
match t {
DisplayFormatType::Default => {
write!(
f,
"CsvExec: source={}, has_header={}",
self.source, self.has_header
)
}
}
}
}
/// Iterator over batches
struct CsvStream<R: Read> {
/// Arrow CSV reader
reader: csv::Reader<R>,
}
impl CsvStream<File> {
/// Create an iterator for a CSV file
pub fn try_new(
filename: &str,
schema: SchemaRef,
has_header: bool,
delimiter: Option<u8>,
projection: &Option<Vec<usize>>,
batch_size: usize,
limit: Option<usize>,
) -> Result<Self> {
let file = File::open(filename)?;
Self::try_new_from_reader(
file, schema, has_header, delimiter, projection, batch_size, limit,
)
}
}
impl<R: Read> CsvStream<R> {
/// Create an iterator for a reader
pub fn try_new_from_reader(
reader: R,
schema: SchemaRef,
has_header: bool,
delimiter: Option<u8>,
projection: &Option<Vec<usize>>,
batch_size: usize,
limit: Option<usize>,
) -> Result<CsvStream<R>> {
let start_line = if has_header { 1 } else { 0 };
let bounds = limit.map(|x| (0, x + start_line));
let reader = csv::Reader::new(
reader,
schema,
has_header,
delimiter,
batch_size,
bounds,
projection.clone(),
);
Ok(Self { reader })
}
}
impl<R: Read + Unpin> Stream for CsvStream<R> {
type Item = ArrowResult<RecordBatch>;
fn poll_next(
mut self: Pin<&mut Self>,
_: &mut Context<'_>,
) -> Poll<Option<Self::Item>> {
Poll::Ready(self.reader.next())
}
}
impl<R: Read + Unpin> RecordBatchStream for CsvStream<R> {
/// Get the schema
fn schema(&self) -> SchemaRef {
self.reader.schema()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test::aggr_test_schema;
use futures::StreamExt;
#[tokio::test]
async fn csv_exec_with_projection() -> Result<()> {
let schema = aggr_test_schema();
let testdata = crate::test_util::arrow_test_data();
let filename = "aggregate_test_100.csv";
let path = format!("{}/csv/{}", testdata, filename);
let csv = CsvExec::try_new(
&path,
CsvReadOptions::new().schema(&schema),
Some(vec![0, 2, 4]),
1024,
None,
)?;
assert_eq!(13, csv.schema.fields().len());
assert_eq!(3, csv.projected_schema.fields().len());
assert_eq!(13, csv.file_schema().fields().len());
assert_eq!(3, csv.schema().fields().len());
let mut stream = csv.execute(0).await?;
let batch = stream.next().await.unwrap()?;
assert_eq!(3, batch.num_columns());
let batch_schema = batch.schema();
assert_eq!(3, batch_schema.fields().len());
assert_eq!("c1", batch_schema.field(0).name());
assert_eq!("c3", batch_schema.field(1).name());
assert_eq!("c5", batch_schema.field(2).name());
Ok(())
}
#[tokio::test]
async fn csv_exec_without_projection() -> Result<()> {
let schema = aggr_test_schema();
let testdata = crate::test_util::arrow_test_data();
let filename = "aggregate_test_100.csv";
let path = format!("{}/csv/{}", testdata, filename);
let csv = CsvExec::try_new(
&path,
CsvReadOptions::new().schema(&schema),
None,
1024,
None,
)?;
assert_eq!(13, csv.schema.fields().len());
assert_eq!(13, csv.projected_schema.fields().len());
assert_eq!(13, csv.file_schema().fields().len());
assert_eq!(13, csv.schema().fields().len());
let mut it = csv.execute(0).await?;
let batch = it.next().await.unwrap()?;
assert_eq!(13, batch.num_columns());
let batch_schema = batch.schema();
assert_eq!(13, batch_schema.fields().len());
assert_eq!("c1", batch_schema.field(0).name());
assert_eq!("c2", batch_schema.field(1).name());
assert_eq!("c3", batch_schema.field(2).name());
Ok(())
}
#[tokio::test]
async fn csv_exec_with_reader() -> Result<()> {
let schema = aggr_test_schema();
let testdata = crate::test_util::arrow_test_data();
let filename = "aggregate_test_100.csv";
let path = format!("{}/csv/{}", testdata, filename);
let buf = std::fs::read(path).unwrap();
let rdr = std::io::Cursor::new(buf);
let csv = CsvExec::try_new_from_reader(
rdr,
CsvReadOptions::new().schema(&schema),
Some(vec![0, 2, 4]),
1024,
None,
)?;
assert_eq!(13, csv.schema.fields().len());
assert_eq!(3, csv.projected_schema.fields().len());
assert_eq!(13, csv.file_schema().fields().len());
assert_eq!(3, csv.schema().fields().len());
let mut stream = csv.execute(0).await?;
let batch = stream.next().await.unwrap()?;
assert_eq!(3, batch.num_columns());
let batch_schema = batch.schema();
assert_eq!(3, batch_schema.fields().len());
assert_eq!("c1", batch_schema.field(0).name());
assert_eq!("c3", batch_schema.field(1).name());
assert_eq!("c5", batch_schema.field(2).name());
Ok(())
}
}