You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I want to use the prebuilt conv ODE blocks in a the network. However, there always shows below error:
Traceback (most recent call last):
File "C:\Program Files\JetBrains\PyCharm 2021.1.1\plugins\python\helpers\pydev_pydevd_bundle\pydevd_exec2.py", line 3, in Exec
exec(exp, global_vars, local_vars)
File "", line 1, in
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 869, in call
outputs = self._symbolic_call(inputs)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 2158, in _symbolic_call
output_shapes = self.compute_output_shape(input_shapes)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 699, in compute_output_shape
return super(Network, self).compute_output_shape(input_shape)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 646, in compute_output_shape
raise NotImplementedError
NotImplementedError
And Here is my code:
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Dense, Flatten, Input, MaxPooling2D, Layer, Lambda, Conv2DTranspose, BatchNormalization, AveragePooling2D, UpSampling2D, concatenate
Hi,
I want to use the prebuilt conv ODE blocks in a the network. However, there always shows below error:
Traceback (most recent call last):
File "C:\Program Files\JetBrains\PyCharm 2021.1.1\plugins\python\helpers\pydev_pydevd_bundle\pydevd_exec2.py", line 3, in Exec
exec(exp, global_vars, local_vars)
File "", line 1, in
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 869, in call
outputs = self._symbolic_call(inputs)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 2158, in _symbolic_call
output_shapes = self.compute_output_shape(input_shapes)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\network.py", line 699, in compute_output_shape
return super(Network, self).compute_output_shape(input_shape)
File "C:\Users\ZhengQing\anaconda3\envs\tensorflow-gpu_115\lib\site-packages\tensorflow_core\python\keras\engine\base_layer.py", line 646, in compute_output_shape
raise NotImplementedError
NotImplementedError
And Here is my code:
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Conv2D, Dense, Flatten, Input, MaxPooling2D, Layer, Lambda, Conv2DTranspose, BatchNormalization, AveragePooling2D, UpSampling2D, concatenate
from tfdiffeq.models import Conv2dODENet
def test_model(input_layer):
x = Conv2D(8, (3, 3), activation="relu", kernel_initializer='he_normal', padding="same")(input_layer)
x = Conv2D(8, (3, 3), activation="relu", kernel_initializer='he_normal', padding="same")(x)
output_layer = Conv2dODENet(num_filters = 2, augment_dim=0, time_dependent=False)(x)
input_layer = Input(shape=(160, 208, 4))
model = test_model(input_layer)
Could you kindly help me to check whether my implementation is correct? Many thanks in advance!
Best,
ZQ
The text was updated successfully, but these errors were encountered: