-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset.py
105 lines (72 loc) · 2.85 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from torch.utils.data import Dataset
import torch
import random
import numpy as np
def make_padded_collate(ignore_idx, start_idx, end_idx):
def padded_collate(batch):
# compute max_len
max_len = max([len(x) for x in batch])
inputs = []
targets = []
times = []
target_times = []
labels = []
for trajectory in batch:
input = [start_idx] + trajectory + [ignore_idx] * (max_len - len(trajectory))
target = trajectory + [end_idx] + [ignore_idx] * (max_len - len(trajectory))
inputs.append(input)
targets.append(target)
return {"input":torch.Tensor(inputs).long(), "target":torch.Tensor(targets).long()}
return padded_collate
def make_padded_collate_for_GANs(end_idx):
def padded_collate(batch):
# compute max_len
max_len = max([len(input) for input, _ in batch])
inputs = []
targets = []
for input, target in batch:
input = input + [end_idx] * (max_len - len(input))
inputs.append(input)
targets.append(target)
return inputs, targets
return padded_collate
class TrajectoryDataset(Dataset):
#Init dataset
def __init__(self, data, n_bins):
# compute max seq len in one line
self.seq_len = max([len(trajectory) for trajectory in data])
self.n_locations = (n_bins+2)**2
vocab = list(range(self.n_locations)) + ['<end>', '<ignore>', '<start>', '<oov>', '<mask>', '<cls>']
self.vocab = {e:i for i, e in enumerate(vocab)}
#special tags
self.START_IDX = self.vocab['<start>']
self.IGNORE_IDX = self.vocab['<ignore>'] #replacement tag for tokens to ignore
self.OUT_OF_VOCAB_IDX = self.vocab['<oov>'] #replacement tag for unknown words
self.MASK_IDX = self.vocab['<mask>'] #replacement tag for the masked word prediction task
self.CLS_IDX = self.vocab['<cls>']
self.END_IDX = self.vocab['<end>']
self.data = data
def __str__(self):
return self.dataset_name
#fetch data
def __getitem__(self, index):
trajectory = self.data[index]
return trajectory
def __len__(self):
return len(self.data)
class RealFakeDataset(Dataset):
def __init__(self, real_data, fake_data):
self.real_data = real_data
self.num_real_data = len(real_data)
self.fake_data = fake_data
self.num_fake_data = len(fake_data)
def __getitem__(self, index):
if index >= self.num_real_data:
target = 0
input = self.fake_data[index-self.num_real_data]
else:
target = 1
input = self.real_data[index]
return input, target
def __len__(self):
return self.num_real_data + self.num_fake_data