forked from vedderb/bldc
-
Notifications
You must be signed in to change notification settings - Fork 3
/
terminal.c
755 lines (656 loc) · 24.6 KB
/
terminal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
/*
Copyright 2016 - 2017 Benjamin Vedder benjamin@vedder.se
This file is part of the VESC firmware.
The VESC firmware is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
The VESC firmware is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "ch.h"
#include "hal.h"
#include "terminal.h"
#include "mcpwm.h"
#include "mcpwm_foc.h"
#include "mc_interface.h"
#include "commands.h"
#include "hw.h"
#include "comm_can.h"
#include "utils.h"
#include "timeout.h"
#include "encoder.h"
#include "drv8301.h"
#include "drv8305.h"
#include <string.h>
#include <stdio.h>
#include <math.h>
// Settings
#define FAULT_VEC_LEN 25
#define CALLBACK_LEN 25
// Private types
typedef struct _terminal_callback_struct {
const char *command;
const char *help;
const char *arg_names;
void(*cbf)(int argc, const char **argv);
} terminal_callback_struct;
// Private variables
static volatile fault_data fault_vec[FAULT_VEC_LEN];
static volatile int fault_vec_write = 0;
static terminal_callback_struct callbacks[CALLBACK_LEN];
static int callback_write = 0;
void terminal_process_string(char *str) {
enum { kMaxArgs = 64 };
int argc = 0;
char *argv[kMaxArgs];
char *p2 = strtok(str, " ");
while (p2 && argc < kMaxArgs) {
argv[argc++] = p2;
p2 = strtok(0, " ");
}
if (argc == 0) {
commands_printf("No command received\n");
return;
}
static mc_configuration mcconf; // static to save some stack
static mc_configuration mcconf_old; // static to save some stack
mcconf = *mc_interface_get_configuration();
mcconf_old = mcconf;
if (strcmp(argv[0], "ping") == 0) {
commands_printf("pong\n");
} else if (strcmp(argv[0], "stop") == 0) {
mc_interface_set_duty(0);
commands_printf("Motor stopped\n");
} else if (strcmp(argv[0], "last_adc_duration") == 0) {
commands_printf("Latest ADC duration: %.4f ms", (double)(mcpwm_get_last_adc_isr_duration() * 1000.0));
commands_printf("Latest injected ADC duration: %.4f ms", (double)(mc_interface_get_last_inj_adc_isr_duration() * 1000.0));
commands_printf("Latest sample ADC duration: %.4f ms\n", (double)(mc_interface_get_last_sample_adc_isr_duration() * 1000.0));
} else if (strcmp(argv[0], "kv") == 0) {
commands_printf("Calculated KV: %.2f rpm/volt\n", (double)mcpwm_get_kv_filtered());
} else if (strcmp(argv[0], "mem") == 0) {
size_t n, size;
n = chHeapStatus(NULL, &size);
commands_printf("core free memory : %u bytes", chCoreGetStatusX());
commands_printf("heap fragments : %u", n);
commands_printf("heap free total : %u bytes\n", size);
} else if (strcmp(argv[0], "threads") == 0) {
thread_t *tp;
static const char *states[] = {CH_STATE_NAMES};
commands_printf(" addr stack prio refs state name time ");
commands_printf("-------------------------------------------------------------");
tp = chRegFirstThread();
do {
commands_printf("%.8lx %.8lx %4lu %4lu %9s %14s %lu",
(uint32_t)tp, (uint32_t)tp->p_ctx.r13,
(uint32_t)tp->p_prio, (uint32_t)(tp->p_refs - 1),
states[tp->p_state], tp->p_name, (uint32_t)tp->p_time);
tp = chRegNextThread(tp);
} while (tp != NULL);
commands_printf("");
} else if (strcmp(argv[0], "fault") == 0) {
commands_printf("%s\n", mc_interface_fault_to_string(mc_interface_get_fault()));
} else if (strcmp(argv[0], "faults") == 0) {
if (fault_vec_write == 0) {
commands_printf("No faults registered since startup\n");
} else {
commands_printf("The following faults were registered since start:\n");
for (int i = 0;i < fault_vec_write;i++) {
commands_printf("Fault : %s", mc_interface_fault_to_string(fault_vec[i].fault));
commands_printf("Current : %.1f", (double)fault_vec[i].current);
commands_printf("Current filtered : %.1f", (double)fault_vec[i].current_filtered);
commands_printf("Voltage : %.2f", (double)fault_vec[i].voltage);
commands_printf("Duty : %.3f", (double)fault_vec[i].duty);
commands_printf("RPM : %.1f", (double)fault_vec[i].rpm);
commands_printf("Tacho : %d", fault_vec[i].tacho);
commands_printf("Cycles running : %d", fault_vec[i].cycles_running);
commands_printf("TIM duty : %d", (int)((float)fault_vec[i].tim_top * fault_vec[i].duty));
commands_printf("TIM val samp : %d", fault_vec[i].tim_val_samp);
commands_printf("TIM current samp : %d", fault_vec[i].tim_current_samp);
commands_printf("TIM top : %d", fault_vec[i].tim_top);
commands_printf("Comm step : %d", fault_vec[i].comm_step);
commands_printf("Temperature : %.2f", (double)fault_vec[i].temperature);
#ifdef HW_HAS_DRV8301
if (fault_vec[i].fault == FAULT_CODE_DRV) {
commands_printf("DRV8301_FAULTS : %s", drv8301_faults_to_string(fault_vec[i].drv8301_faults));
}
#endif
commands_printf(" ");
}
}
} else if (strcmp(argv[0], "rpm") == 0) {
commands_printf("Electrical RPM: %.2f rpm\n", (double)mc_interface_get_rpm());
} else if (strcmp(argv[0], "tacho") == 0) {
commands_printf("Tachometer counts: %i\n", mc_interface_get_tachometer_value(0));
} else if (strcmp(argv[0], "tim") == 0) {
chSysLock();
volatile int t1_cnt = TIM1->CNT;
volatile int t8_cnt = TIM8->CNT;
volatile int dir1 = !!(TIM1->CR1 & (1 << 4));
volatile int dir8 = !!(TIM8->CR1 & (1 << 4));
chSysUnlock();
int duty1 = TIM1->CCR1;
int duty2 = TIM1->CCR2;
int duty3 = TIM1->CCR3;
int top = TIM1->ARR;
int voltage_samp = TIM8->CCR1;
int current1_samp = TIM1->CCR4;
int current2_samp = TIM8->CCR2;
commands_printf("Tim1 CNT: %i", t1_cnt);
commands_printf("Tim8 CNT: %u", t8_cnt);
commands_printf("Duty cycle1: %u", duty1);
commands_printf("Duty cycle2: %u", duty2);
commands_printf("Duty cycle3: %u", duty3);
commands_printf("Top: %u", top);
commands_printf("Dir1: %u", dir1);
commands_printf("Dir8: %u", dir8);
commands_printf("Voltage sample: %u", voltage_samp);
commands_printf("Current 1 sample: %u", current1_samp);
commands_printf("Current 2 sample: %u\n", current2_samp);
} else if (strcmp(argv[0], "volt") == 0) {
commands_printf("Input voltage: %.2f\n", (double)GET_INPUT_VOLTAGE());
} else if (strcmp(argv[0], "param_detect") == 0) {
// Use COMM_MODE_DELAY and try to figure out the motor parameters.
if (argc == 4) {
float current = -1.0;
float min_rpm = -1.0;
float low_duty = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &min_rpm);
sscanf(argv[3], "%f", &low_duty);
if (current > 0.0 && current < mcconf.l_current_max &&
min_rpm > 10.0 && min_rpm < 3000.0 &&
low_duty > 0.02 && low_duty < 0.8) {
float cycle_integrator;
float coupling_k;
int8_t hall_table[8];
int hall_res;
if (conf_general_detect_motor_param(current, min_rpm, low_duty, &cycle_integrator, &coupling_k, hall_table, &hall_res)) {
commands_printf("Cycle integrator limit: %.2f", (double)cycle_integrator);
commands_printf("Coupling factor: %.2f", (double)coupling_k);
if (hall_res == 0) {
commands_printf("Detected hall sensor table:");
commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
hall_table[0], hall_table[1], hall_table[2], hall_table[3],
hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
} else if (hall_res == -1) {
commands_printf("Hall sensor detection failed:");
commands_printf("%i, %i, %i, %i, %i, %i, %i, %i\n",
hall_table[0], hall_table[1], hall_table[2], hall_table[3],
hall_table[4], hall_table[5], hall_table[6], hall_table[7]);
} else if (hall_res == -2) {
commands_printf("WS2811 enabled. Hall sensors cannot be used.\n");
} else if (hall_res == -3) {
commands_printf("Encoder enabled. Hall sensors cannot be used.\n");
}
} else {
commands_printf("Detection failed. Try again with different parameters.\n");
}
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires three arguments.\n");
}
} else if (strcmp(argv[0], "rpm_dep") == 0) {
mc_rpm_dep_struct rpm_dep = mcpwm_get_rpm_dep();
commands_printf("Cycle int limit: %.2f", (double)rpm_dep.cycle_int_limit);
commands_printf("Cycle int limit running: %.2f", (double)rpm_dep.cycle_int_limit_running);
commands_printf("Cycle int limit max: %.2f\n", (double)rpm_dep.cycle_int_limit_max);
} else if (strcmp(argv[0], "can_devs") == 0) {
commands_printf("CAN devices seen on the bus the past second:\n");
for (int i = 0;i < CAN_STATUS_MSGS_TO_STORE;i++) {
can_status_msg *msg = comm_can_get_status_msg_index(i);
if (msg->id >= 0 && UTILS_AGE_S(msg->rx_time) < 1.0) {
commands_printf("ID : %i", msg->id);
commands_printf("RX Time : %i", msg->rx_time);
commands_printf("Age (milliseconds) : %.2f", (double)(UTILS_AGE_S(msg->rx_time) * 1000.0));
commands_printf("RPM : %.2f", (double)msg->rpm);
commands_printf("Current : %.2f", (double)msg->current);
commands_printf("Duty : %.2f\n", (double)msg->duty);
}
}
} else if (strcmp(argv[0], "foc_encoder_detect") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
if (current > 0.0 && current <= mcconf.l_current_max) {
if (encoder_is_configured()) {
mc_motor_type type_old = mcconf.motor_type;
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
float offset = 0.0;
float ratio = 0.0;
bool inverted = false;
mcpwm_foc_encoder_detect(current, true, &offset, &ratio, &inverted);
mcconf.motor_type = type_old;
mc_interface_set_configuration(&mcconf);
commands_printf("Offset : %.2f", (double)offset);
commands_printf("Ratio : %.2f", (double)ratio);
commands_printf("Inverted : %s\n", inverted ? "true" : "false");
} else {
commands_printf("Encoder not enabled.\n");
}
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_res") == 0) {
if (argc == 2) {
float current = -1.0;
sscanf(argv[1], "%f", ¤t);
if (current > 0.0 && current <= mcconf.l_current_max) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
commands_printf("Resistance: %.6f ohm\n", (double)mcpwm_foc_measure_resistance(current, 2000));
mc_interface_set_configuration(&mcconf_old);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_ind") == 0) {
if (argc == 2) {
float duty = -1.0;
sscanf(argv[1], "%f", &duty);
if (duty > 0.0 && duty < 0.9) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mcconf.foc_f_sw = 3000.0;
mc_interface_set_configuration(&mcconf);
float curr;
float ind = mcpwm_foc_measure_inductance(duty, 200, &curr);
commands_printf("Inductance: %.2f microhenry (%.2f A)\n", (double)ind, (double)curr);
mc_interface_set_configuration(&mcconf_old);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_linkage") == 0) {
if (argc == 5) {
float current = -1.0;
float duty = -1.0;
float min_erpm = -1.0;
float res = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &duty);
sscanf(argv[3], "%f", &min_erpm);
sscanf(argv[4], "%f", &res);
if (current > 0.0 && current <= mcconf.l_current_max && min_erpm > 0.0 && duty > 0.02 && res >= 0.0) {
float linkage;
conf_general_measure_flux_linkage(current, duty, min_erpm, res, &linkage);
commands_printf("Flux linkage: %.7f\n", (double)linkage);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "measure_res_ind") == 0) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
float res = 0.0;
float ind = 0.0;
mcpwm_foc_measure_res_ind(&res, &ind);
commands_printf("Resistance: %.6f ohm", (double)res);
commands_printf("Inductance: %.2f microhenry\n", (double)ind);
mc_interface_set_configuration(&mcconf_old);
} else if (strcmp(argv[0], "measure_linkage_foc") == 0) {
if (argc == 2) {
float duty = -1.0;
sscanf(argv[1], "%f", &duty);
if (duty > 0.0) {
mcconf.motor_type = MOTOR_TYPE_FOC;
mc_interface_set_configuration(&mcconf);
const float res = (3.0 / 2.0) * mcconf.foc_motor_r;
// Disable timeout
systime_t tout = timeout_get_timeout_msec();
float tout_c = timeout_get_brake_current();
timeout_reset();
timeout_configure(60000, 0.0);
for (int i = 0;i < 100;i++) {
mc_interface_set_duty(((float)i / 100.0) * duty);
chThdSleepMilliseconds(20);
}
float vq_avg = 0.0;
float rpm_avg = 0.0;
float samples = 0.0;
float iq_avg = 0.0;
for (int i = 0;i < 1000;i++) {
vq_avg += mcpwm_foc_get_vq();
rpm_avg += mc_interface_get_rpm();
iq_avg += mc_interface_get_tot_current_directional();
samples += 1.0;
chThdSleepMilliseconds(1);
}
mc_interface_release_motor();
mc_interface_set_configuration(&mcconf_old);
// Enable timeout
timeout_configure(tout, tout_c);
vq_avg /= samples;
rpm_avg /= samples;
iq_avg /= samples;
float linkage = (vq_avg - res * iq_avg) / (rpm_avg * ((2.0 * M_PI) / 60.0));
commands_printf("Flux linkage: %.7f\n", (double)linkage);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
} else if (strcmp(argv[0], "foc_state") == 0) {
mcpwm_foc_print_state();
commands_printf(" ");
} else if (strcmp(argv[0], "hw_status") == 0) {
commands_printf("Firmware: %d.%d", FW_VERSION_MAJOR, FW_VERSION_MINOR);
#ifdef HW_NAME
commands_printf("Hardware: %s", HW_NAME);
#endif
commands_printf("UUID: %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X %02X",
STM32_UUID_8[0], STM32_UUID_8[1], STM32_UUID_8[2], STM32_UUID_8[3],
STM32_UUID_8[4], STM32_UUID_8[5], STM32_UUID_8[6], STM32_UUID_8[7],
STM32_UUID_8[8], STM32_UUID_8[9], STM32_UUID_8[10], STM32_UUID_8[11]);
commands_printf("Permanent NRF found: %s", conf_general_permanent_nrf_found ? "Yes" : "No");
commands_printf(" ");
} else if (strcmp(argv[0], "drv8301_read_reg") == 0) {
#ifdef HW_HAS_DRV8301
if (argc == 2) {
int reg = -1;
sscanf(argv[1], "%d", ®);
if (reg >= 0) {
unsigned int res = drv8301_read_reg(reg);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("Reg 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
#else
commands_printf("This hardware does not have a DRV8301.\n");
#endif
} else if (strcmp(argv[0], "drv8301_write_reg") == 0) {
#ifdef HW_HAS_DRV8301
if (argc == 3) {
int reg = -1;
int val = -1;
sscanf(argv[1], "%d", ®);
sscanf(argv[2], "%x", &val);
if (reg >= 0 && val >= 0) {
drv8301_write_reg(reg, val);
unsigned int res = drv8301_read_reg(reg);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires two arguments.\n");
}
#else
commands_printf("This hardware does not have a DRV8301.\n");
#endif
} else if (strcmp(argv[0], "drv8301_set_oc_adj") == 0) {
#ifdef HW_HAS_DRV8301
if (argc == 2) {
int val = -1;
sscanf(argv[1], "%d", &val);
if (val >= 0 && val < 32) {
drv8301_set_oc_adj(val);
unsigned int res = drv8301_read_reg(2);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", 2, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
#else
commands_printf("This hardware does not have a DRV8301.\n");
#endif
} else if (strcmp(argv[0], "drv8301_print_faults") == 0) {
#ifdef HW_HAS_DRV8301
commands_printf(drv8301_faults_to_string(drv8301_read_faults()));
#else
commands_printf("This hardware does not have a DRV8301.\n");
#endif
} else if (strcmp(argv[0], "drv8301_reset_faults") == 0) {
#ifdef HW_HAS_DRV8301
drv8301_reset_faults();
#else
commands_printf("This hardware does not have a DRV8301.\n");
#endif
} else if (strcmp(argv[0], "drv8305_read_reg") == 0) {
#ifdef HW_HAS_DRV8305
if (argc == 2) {
int reg = -1;
sscanf(argv[1], "%d", ®);
if (reg >= 0) {
unsigned int res = drv8305_read_reg(reg);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("Reg 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires one argument.\n");
}
#else
commands_printf("This hardware does not have a DRV8305.\n");
#endif
} else if (strcmp(argv[0], "drv8305_write_reg") == 0) {
#ifdef HW_HAS_DRV8305
if (argc == 3) {
int reg = -1;
int val = -1;
sscanf(argv[1], "%d", ®);
sscanf(argv[2], "%x", &val);
if (reg >= 0 && val >= 0) {
drv8305_write_reg(reg, val);
unsigned int res = drv8305_read_reg(reg);
char bl[9];
char bh[9];
utils_byte_to_binary((res >> 8) & 0xFF, bh);
utils_byte_to_binary(res & 0xFF, bl);
commands_printf("New reg value 0x%02x: %s %s (0x%04x)\n", reg, bh, bl, res);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires two arguments.\n");
}
#else
commands_printf("This hardware does not have a DRV8305.\n");
#endif
} else if (strcmp(argv[0], "foc_openloop") == 0) {
if (argc == 3) {
float current = -1.0;
float erpm = -1.0;
sscanf(argv[1], "%f", ¤t);
sscanf(argv[2], "%f", &erpm);
if (current >= 0.0 && erpm >= 0.0) {
mcpwm_foc_set_openloop(current, erpm);
} else {
commands_printf("Invalid argument(s).\n");
}
} else {
commands_printf("This command requires two arguments.\n");
}
}
// The help command
else if (strcmp(argv[0], "help") == 0) {
commands_printf("Valid commands are:");
commands_printf("help");
commands_printf(" Show this help");
commands_printf("ping");
commands_printf(" Print pong here to see if the reply works");
commands_printf("stop");
commands_printf(" Stop the motor");
commands_printf("last_adc_duration");
commands_printf(" The time the latest ADC interrupt consumed");
commands_printf("kv");
commands_printf(" The calculated kv of the motor");
commands_printf("mem");
commands_printf(" Show memory usage");
commands_printf("threads");
commands_printf(" List all threads");
commands_printf("fault");
commands_printf(" Prints the current fault code");
commands_printf("faults");
commands_printf(" Prints all stored fault codes and conditions when they arrived");
commands_printf("rpm");
commands_printf(" Prints the current electrical RPM");
commands_printf("tacho");
commands_printf(" Prints tachometer value");
commands_printf("tim");
commands_printf(" Prints tim1 and tim8 settings");
commands_printf("volt");
commands_printf(" Prints different voltages");
commands_printf("param_detect [current] [min_rpm] [low_duty]");
commands_printf(" Spin up the motor in COMM_MODE_DELAY and compute its parameters.");
commands_printf(" This test should be performed without load on the motor.");
commands_printf(" Example: param_detect 5.0 600 0.06");
commands_printf("rpm_dep");
commands_printf(" Prints some rpm-dep values");
commands_printf("can_devs");
commands_printf(" Prints all CAN devices seen on the bus the past second");
commands_printf("foc_encoder_detect [current]");
commands_printf(" Run the motor at 1Hz on open loop and compute encoder settings");
commands_printf("measure_res [current]");
commands_printf(" Lock the motor with a current and calculate its resistance");
commands_printf("measure_ind [duty]");
commands_printf(" Send short voltage pulses, measure the current and calculate the motor inductance");
commands_printf("measure_linkage [current] [duty] [min_rpm] [motor_res]");
commands_printf(" Run the motor in BLDC delay mode and measure the flux linkage");
commands_printf(" example measure_linkage 5 0.5 700 0.076");
commands_printf(" tip: measure the resistance with measure_res first");
commands_printf("measure_res_ind");
commands_printf(" Measure the motor resistance and inductance with an incremental adaptive algorithm.");
commands_printf("measure_linkage_foc [duty]");
commands_printf(" Run the motor with FOC and measure the flux linkage.");
commands_printf("foc_state");
commands_printf(" Print some FOC state variables.");
commands_printf("hw_status");
commands_printf(" Print some hardware status information.");
#ifdef HW_HAS_DRV8301
commands_printf("drv8301_read_reg [reg]");
commands_printf(" Read a register from the DRV8301 and print it.");
commands_printf("drv8301_write_reg [reg] [hexvalue]");
commands_printf(" Write to a DRV8301 register.");
commands_printf("drv8301_set_oc_adj [value]");
commands_printf(" Set the DRV8301 OC ADJ register.");
commands_printf("drv8301_print_faults");
commands_printf(" Print all current DRV8301 faults.");
commands_printf("drv8301_reset_faults");
commands_printf(" Reset all latched DRV8301 faults.");
#endif
#ifdef HW_HAS_DRV8305
commands_printf("drv8305_read_reg [reg]");
commands_printf(" Read a register from the DRV8305 and print it.");
commands_printf("drv8305_write_reg [reg] [hexvalue]");
commands_printf(" Write to a DRV8305 register.");
#endif
commands_printf("foc_openloop [current] [erpm]");
commands_printf(" Create an open loop rotating current vector.");
for (int i = 0;i < callback_write;i++) {
if (callbacks[i].arg_names) {
commands_printf("%s %s", callbacks[i].command, callbacks[i].arg_names);
} else {
commands_printf(callbacks[i].command);
}
if (callbacks[i].help) {
commands_printf(" %s", callbacks[i].help);
} else {
commands_printf(" There is no help available for this command.");
}
}
commands_printf(" ");
} else {
bool found = false;
for (int i = 0;i < callback_write;i++) {
if (strcmp(argv[0], callbacks[i].command) == 0) {
callbacks[i].cbf(argc, (const char**)argv);
found = true;
break;
}
}
if (!found) {
commands_printf("Invalid command: %s\n"
"type help to list all available commands\n", argv[0]);
}
}
}
void terminal_add_fault_data(fault_data *data) {
fault_vec[fault_vec_write++] = *data;
if (fault_vec_write >= FAULT_VEC_LEN) {
fault_vec_write = 0;
}
}
/**
* Register a custom command callback to the terminal. If the command
* is already registered the old command callback will be replaced.
*
* @param command
* The command name.
*
* @param help
* A help text for the command. Can be NULL.
*
* @param arg_names
* The argument names for the command, e.g. [arg_a] [arg_b]
* Can be NULL.
*
* @param cbf
* The callback function for the command.
*/
void terminal_register_command_callback(
const char* command,
const char *help,
const char *arg_names,
void(*cbf)(int argc, const char **argv)) {
int callback_num = callback_write;
for (int i = 0;i < callback_write;i++) {
// First check the address in case the same callback is registered more than once.
if (callbacks[i].command == command) {
callback_num = i;
break;
}
// Check by string comparison.
if (strcmp(callbacks[i].command, command) == 0) {
callback_num = i;
break;
}
}
callbacks[callback_num].command = command;
callbacks[callback_num].help = help;
callbacks[callback_num].arg_names = arg_names;
callbacks[callback_num].cbf = cbf;
if (callback_num == callback_write) {
callback_write++;
if (callback_write >= CALLBACK_LEN) {
callback_write = 0;
}
}
}