-
Notifications
You must be signed in to change notification settings - Fork 15
/
README.Rmd
158 lines (118 loc) · 5.21 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
output:
rmarkdown::github_document
bibliography: "inst/REFERENCES.bib"
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "README-"
)
```
# R/`hal9001`
[![R-CMD-check](https://github.com/tlverse/hal9001/workflows/R-CMD-check/badge.svg)](https://github.com/tlverse/hal9001/actions)
[![Coverage Status](https://codecov.io/gh/tlverse/hal9001/branch/master/graph/badge.svg)](https://app.codecov.io/gh/tlverse/hal9001)
[![CRAN](https://www.r-pkg.org/badges/version/hal9001)](https://www.r-pkg.org/pkg/hal9001)
[![CRAN downloads](https://cranlogs.r-pkg.org/badges/hal9001)](https://CRAN.R-project.org/package=hal9001)
[![CRAN total downloads](http://cranlogs.r-pkg.org/badges/grand-total/hal9001)](https://CRAN.R-project.org/package=hal9001)
[![Project Status: Active – The project has reached a stable, usable state and is being actively developed.](https://www.repostatus.org/badges/latest/active.svg)](https://www.repostatus.org/#active)
[![License: GPL v3](https://img.shields.io/badge/License-GPL%20v3-blue.svg)](http://www.gnu.org/licenses/gpl-3.0)
[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3558313.svg)](https://doi.org/10.5281/zenodo.3558313)
[![DOI](https://joss.theoj.org/papers/10.21105/joss.02526/status.svg)](https://doi.org/10.21105/joss.02526)
> The _Scalable_ Highly Adaptive Lasso
__Authors:__ [Jeremy Coyle](https://github.com/tlverse), [Nima
Hejazi](https://nimahejazi.org), [Rachael
Phillips](https://github.com/rachaelvp), [Lars van der
Laan](https://github.com/Larsvanderlaan), and [Mark van der
Laan](https://vanderlaan-lab.org/)
---
## What's `hal9001`?
`hal9001` is an R package providing an implementation of the scalable _highly
adaptive lasso_ (HAL), a nonparametric regression estimator that applies
L1-regularized lasso regression to a design matrix composed of indicator
functions corresponding to the support of the functional over a set of
covariates and interactions thereof. HAL regression allows for arbitrarily
complex functional forms to be estimated at fast (near-parametric) convergence
rates under only global smoothness assumptions [@vdl2017generally;
@bibaut2019fast]. For detailed theoretical discussions of the highly adaptive
lasso estimator, consider consulting, for example, @vdl2017generally,
@vdl2017finite, and @vdl2017uniform. For a computational demonstration of the
versatility of HAL regression, see @benkeser2016hal. Recent theoretical works
have demonstrated success in building efficient estimators of complex
parameters when particular variations of HAL regression are used to estimate
nuisance parameters [e.g., @vdl2019efficient; @ertefaie2020nonparametric].
---
## Installation
For standard use, we recommend installing the package from
[CRAN](https://CRAN.R-project.org/package=hal9001) via
```{r cran-installation, eval = FALSE}
install.packages("hal9001")
```
To contribute, install the _development version_ of `hal9001` from GitHub via
[`remotes`](https://CRAN.R-project.org/package=remotes):
```{r gh-master-installation, eval = FALSE}
remotes::install_github("tlverse/hal9001")
```
---
## Issues
If you encounter any bugs or have any specific feature requests, please [file an
issue](https://github.com/tlverse/hal9001/issues).
---
## Example
Consider the following minimal example in using `hal9001` to generate
predictions via Highly Adaptive Lasso regression:
```{r example}
# load the package and set a seed
library(hal9001)
set.seed(385971)
# simulate data
n <- 100
p <- 3
x <- matrix(rnorm(n * p), n, p)
y <- x[, 1] * sin(x[, 2]) + rnorm(n, mean = 0, sd = 0.2)
# fit the HAL regression
hal_fit <- fit_hal(X = x, Y = y, yolo = TRUE)
hal_fit$times
# training sample prediction
preds <- predict(hal_fit, new_data = x)
mean(hal_mse <- (preds - y)^2)
```
---
## Contributions
Contributions are very welcome. Interested contributors should consult our
[contribution
guidelines](https://github.com/tlverse/hal9001/blob/master/CONTRIBUTING.md)
prior to submitting a pull request.
---
## Citation
After using the `hal9001` R package, please cite both of the following:
@software{coyle2022hal9001-rpkg,
author = {Coyle, Jeremy R and Hejazi, Nima S and Phillips, Rachael V
and {van der Laan}, Lars and {van der Laan}, Mark J},
title = {{hal9001}: The scalable highly adaptive lasso},
year = {2022},
url = {https://doi.org/10.5281/zenodo.3558313},
doi = {10.5281/zenodo.3558313}
note = {{R} package version 0.4.2}
}
@article{hejazi2020hal9001-joss,
author = {Hejazi, Nima S and Coyle, Jeremy R and {van der Laan}, Mark
J},
title = {{hal9001}: Scalable highly adaptive lasso regression in
{R}},
year = {2020},
url = {https://doi.org/10.21105/joss.02526},
doi = {10.21105/joss.02526},
journal = {Journal of Open Source Software},
publisher = {The Open Journal}
}
---
## License
© 2017-2024 [Jeremy Coyle](https://github.com/tlverse) and [Nima
Hejazi](https://nimahejazi.org)
The contents of this repository are distributed under the GPL-3 license. See
file `LICENSE` for details.
---
## References