-
Notifications
You must be signed in to change notification settings - Fork 226
/
tensor.h
377 lines (340 loc) · 10.6 KB
/
tensor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
#ifndef ocropus_tensor_
#define ocropus_tensor_
// A tensor storage class for computations within CLSTM.
// There are several tensor and matrix classes used within CLSTM:
//
// - Tensor2: the basic CLSTM tensor class
// - TensorMap2: the Eigen TensorMap class (used for Eigen computations)
// - EigenTensor2: native Eigen storage, only works on CPU
// - MatrixMap: Eigen mapping of Matrix used for CPU computations (slightly
// faster)
//
// Other storage:
//
// - Batch: a pair of Tensor2 instances for activations and derivatives
// - Params: a pair of Tensor2 instances for weights and derivatives
// - Sequence: a sequence of Batches, may use a rank 3 tensor internally
//
// Why is this so complicated? There are a number of constraints:
//
// - We need to use Eigen::Tensor for compatibility with TensorFlow
// - Eigen::Tensor uses overloading and templates for genericity
// - We want to compile only GPU code with nvcc (since nvcc is otherwise buggy)
// - We don't want two separate versions of the numerical functions.
// - The code was developed incrementally from a non-GPU version.
// - The GPU code imposes some special constraints in order to run efficiently.
// - Eigen::Tensor is slow for some cases where Eigen::Matrix is fast.
//
// You can think of Tensor2 as a rank-2 tensor with shape (w,h), Batch
// as a rank-3 tensor with shape (w,h,2), and Sequence as a rank-4
// tensor with shape (w,h,2,N). In standard tensor libraries, we would
// simply express the various computations as computations over
// slices, bit the Eigen Tensor library does not have full support for
// tensor slices as independent objects.
#include <Eigen/Dense>
#include <memory>
#include <unordered_map>
#include <unsupported/Eigen/CXX11/Tensor>
#ifdef CLSTM_CUDA
#include "cuda.h"
#include "cuda_runtime.h"
#endif
namespace ocropus {
using Eigen::Tensor;
using Eigen::TensorMap;
using Eigen::TensorRef;
using Eigen::DSizes;
// using Eigen::Index;
typedef ptrdiff_t Index;
using Eigen::array;
using std::shared_ptr;
using std::unique_ptr;
#define ROWS(A) (A).rows()
#define COLS(A) (A).cols()
//#define MAPFUN(M, F) ((M).unaryExpr(ptr_fun(F)))
#ifdef LSTM_DOUBLE
typedef double Float;
#else
typedef float Float;
#endif
// Mathematical helper functions.
inline Float tanh_(Float x) { return tanh(x); }
inline Float relu_(Float x) { return x <= 0 ? 0 : x; }
inline Float heavi_(Float x) { return x <= 0 ? 0 : 1; }
#ifndef MAXEXP
#define MAXEXP 30
#endif
inline Float limexp(Float x) {
if (x < -MAXEXP) return exp(-MAXEXP);
if (x > MAXEXP) return exp(MAXEXP);
return exp(x);
}
inline Float sigmoid(Float x) { return 1.0 / (1.0 + limexp(-x)); }
inline Float log_add(Float x, Float y) {
if (fabs(x - y) > 10) return fmax(x, y);
return log(exp(x - y) + 1) + y;
}
inline Float log_mul(Float x, Float y) { return x + y; }
using Eigen::Tensor;
using Eigen::TensorMap;
typedef Float Scalar;
typedef Eigen::Tensor<Float, 1> EigenTensor1;
typedef Eigen::Tensor<Float, 2> EigenTensor2;
typedef Eigen::Tensor<Float, 3> EigenTensor3;
typedef Eigen::Tensor<Float, 4> EigenTensor4;
typedef Eigen::TensorMap<Eigen::Tensor<Float, 1>> TensorMap1;
typedef Eigen::TensorMap<Eigen::Tensor<Float, 2>> TensorMap2;
typedef Eigen::TensorMap<Eigen::Tensor<Float, 3>> TensorMap3;
typedef Eigen::TensorMap<Eigen::Tensor<Float, 4>> TensorMap4;
typedef Eigen::TensorRef<Eigen::Tensor<Float, 1>> TensorRef1;
typedef Eigen::TensorRef<Eigen::Tensor<Float, 2>> TensorRef2;
typedef Eigen::TensorRef<Eigen::Tensor<Float, 3>> TensorRef3;
typedef Eigen::TensorRef<Eigen::Tensor<Float, 4>> TensorRef4;
typedef Eigen::Matrix<Float, Eigen::Dynamic, 1> EigenVector;
typedef Eigen::Matrix<Float, Eigen::Dynamic, Eigen::Dynamic> EigenMatrix;
typedef Eigen::Map<EigenVector> VectorMap;
typedef Eigen::Map<EigenMatrix> MatrixMap;
#if 0
inline int rows(const TensorMap2 &m) { return m.dimension(0); }
inline int cols(const TensorMap2 &m) { return m.dimension(1); }
inline int rows(const EigenTensor2 &m) { return m.dimension(0); }
inline int cols(const EigenTensor2 &m) { return m.dimension(1); }
#endif
template <class T>
inline void alloc_gpu(T *&p, int nbytes, int gpu) {
p = nullptr;
#ifdef CLSTM_CUDA
if (gpu < 0) {
p = (T *)malloc(nbytes);
} else {
cudaMalloc((void **)&p, nbytes);
}
#else
assert(gpu < 0 && "not compiled for CUDA");
p = (T *)malloc(nbytes);
#endif
}
template <class T>
inline void free_gpu(T *&p, int gpu) {
#ifdef CLSTM_CUDA
if (gpu < 0) {
free((void *)p);
p = nullptr;
} else {
cudaFree((void **)&p);
p = nullptr;
}
#else
assert(gpu < 0 && "not compiled for CUDA");
free((void *)p);
p = nullptr;
#endif
}
inline void memcpy_gpu(void *dest, int dest_gpu, void *src, int src_gpu,
int nbytes) {
#ifdef CLSTM_CUDA
if (dest_gpu >= 0 && src_gpu >= 0) {
cudaMemcpy(dest, src, nbytes, cudaMemcpyDeviceToDevice);
} else if (dest_gpu >= 0 && src_gpu < 0) {
cudaMemcpy(dest, src, nbytes, cudaMemcpyHostToDevice);
} else if (dest_gpu < 0 && src_gpu >= 0) {
cudaMemcpy(dest, src, nbytes, cudaMemcpyDeviceToHost);
} else {
memcpy(dest, src, nbytes);
}
#else
assert(dest_gpu < 0 && src_gpu < 0);
memcpy(dest, src, nbytes);
#endif
}
// A simple Tensor class that handles multiple device
// types a bit more transparently. It handles allocation/deallocation,
// plus assignment.
struct Tensor2 {
protected:
int gpu = -1;
public:
// The data and dimensions of this tensor.
int dims[2] = {0, 0};
Float *ptr = nullptr;
// The tensor data may be owned (usually by a Sequence);
// in that case, it isn't deallocated when the tensor goes
// out of scope.
bool displaced = false;
bool resizeable = true;
Tensor2() {}
Tensor2(const Tensor2 &other) { *this = other; }
~Tensor2() { reset(); }
void displaceTo(Float *ptr, int n, int m, int gpu = -1) {
displaced = true;
this->gpu = gpu;
this->ptr = ptr;
dims[0] = n;
dims[1] = m;
}
void reset() {
if (!ptr) return;
if (!displaced) free_gpu(ptr, gpu);
displaced = false;
ptr = nullptr;
dims[0] = 0;
dims[1] = 0;
}
int getGpu() const { return gpu; }
void setGpu(int n) {
reset();
#ifdef CLSTM_CUDA
gpu = n;
#else
assert(n < 0);
#endif
}
void resize(int n, int m) {
assert(ptr == nullptr || (dims[0] > 0 && dims[1] > 0));
// resizing to the same size is always allowed
if (dims[0] == n && dims[1] == m) return;
assert(resizeable);
assert(ptr == nullptr || !displaced);
reset();
if (n == 0 || m == 0) return;
dims[0] = n;
dims[1] = m;
alloc_gpu(ptr, n * m * sizeof(Float), gpu);
}
void like(Tensor2 &other) {
setGpu(other.getGpu());
resize(other.dimension(0), other.dimension(1));
}
void like(TensorMap2 other) {
resize(other.dimension(0), other.dimension(1));
}
Float *data() { return ptr; }
int dimension(int i) const { return dims[i]; }
int rows() const { return dims[0]; }
int cols() const { return dims[1]; }
int total_size() const { return dims[0] * dims[1]; }
// These operators allow easy access to the TensorMap version
// of the tensor. Use these on the right hand side of an expression.
// The following are equivalent:
//
// *x, x(), x.map()
//
// Probably the x() is the most natural one to use in most expressions.
TensorMap2 operator*() const { return TensorMap2(ptr, dims[0], dims[1]); }
TensorMap2 operator()() { return **this; }
TensorMap2 map() { return **this; }
// Convert the tensor to an Eigen Matrix Map
MatrixMap mat() { return MatrixMap(ptr, dims[0], dims[1]); }
// Extract the offset and matrix part from a homogeneous
// matrix transformation. This can also be expressed
// using slice/chip in Eigen::Tensor, but that turns
// out to be significantly slower.
TensorMap2 map1() { return TensorMap2(ptr + dims[0], dims[0], dims[1] - 1); }
TensorMap1 off1() { return TensorMap1(ptr, dims[0]); }
// Extract the offset and matrix part from a homogeneous
// matrix transformation, this time using Eigen::Matrix
// types.
MatrixMap mat1() { return MatrixMap(ptr + dims[0], dims[0], dims[1] - 1); }
VectorMap vec1() { return VectorMap(ptr, dims[0]); }
Float &operator()(int i, int j) {
assert(gpu < 0 && "use get() for gpu access");
return (**this)(i, j);
}
const Float &operator()(int i, int j) const {
assert(gpu < 0 && "use get() for gpu access");
return (**this)(i, j);
}
// accessors that work on GPU
Float get(int i, int j) {
if (gpu < 0) {
return (**this)(i, j);
} else {
#ifdef CLSTM_CUDA
Float *devptr = ptr + (i + j * dims[0]);
Float value;
cudaMemcpy(&value, devptr, sizeof(Float), cudaMemcpyDeviceToHost);
return value;
#else
THROW("not compiled for GPU");
return 0;
#endif
}
}
void put(Float value, int i, int j) {
if (gpu < 0) {
(**this)(i, j) = value;
} else {
#ifdef CLSTM_CUDA
Float *devptr = ptr + (i + j * dims[0]);
cudaMemcpy(devptr, &value, sizeof(Float), cudaMemcpyDeviceToHost);
#else
THROW("not compiled for GPU");
#endif
}
}
int nbytes() const { return total_size() * sizeof(Float); }
void operator=(TensorMap2 other) {
resize(other.dimension(0), other.dimension(1));
int nbytes = total_size() * sizeof(Float);
memcpy(ptr, other.data(), nbytes);
}
void operator=(const Tensor2 &other) {
resize(other.dimension(0), other.dimension(1));
int nbytes = total_size() * sizeof(Float);
memcpy_gpu(ptr, gpu, other.ptr, other.gpu, nbytes);
}
void setZero() {
#ifdef CLSTM_CUDA
if (gpu >= 0)
cudaMemset(ptr, 0, total_size() * sizeof(Float));
else
memset(ptr, 0, total_size() * sizeof(Float));
#else
memset(ptr, 0, total_size() * sizeof(Float));
#endif
}
void setZero(int n, int m) {
resize(n, m);
setZero();
}
};
inline Float asum1(const TensorRef1 &a) {
int n = a.dimension(0);
Float result = 0.0;
for (int i = 0; i < n; i++) result += a(i);
return result;
}
inline Float asum2(const TensorRef2 &a) {
int n = a.dimension(0);
int m = a.dimension(1);
Float result = 0.0;
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) result += a(i, j);
return result;
}
inline Float amax1(const TensorRef1 &a) {
int n = a.dimension(0);
Float result = a(0, 0);
for (int i = 0; i < n; i++) result = fmax(result, a(i));
return result;
}
inline int argmax(const TensorRef1 &m) {
int mi = -1;
Float mv = m(0);
for (int i = 0; i < m.dimension(0); i++) {
if (m(i) < mv) continue;
mi = i;
mv = m(i);
}
return mi;
}
inline Float amax2(const TensorRef2 &a) {
int n = a.dimension(0);
int m = a.dimension(1);
Float result = a(0, 0);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++) result = fmax(result, a(i, j));
return result;
}
}
#endif