-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathinference.py
64 lines (50 loc) · 2.64 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
'''
Inference model for grasping
'''
import tensorflow as tf
FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_bool('trainable', False,
"""Computes or not gradients for learning.""")
def conv2d_s2(x, W):
return tf.nn.conv2d(x, W, strides=[1,2,2,1], padding='SAME')
def conv2d_s1(x, W):
return tf.nn.conv2d(x, W, strides=[1,1,1,1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')
def inference(images):
if FLAGS.trainable:
keep_prob = 0.8
else:
keep_prob = 1.
print('keep_prob = %.1f' %keep_prob)
w1 = tf.get_variable('w1', shape=[5,5,3,64], trainable=FLAGS.trainable)
b1 = tf.get_variable('b1', initializer=tf.constant(0.1, shape=[64]), trainable=FLAGS.trainable)
h1 = tf.nn.relu(conv2d_s2(images, w1)+b1)
h1_pool = max_pool_2x2(h1)
w2 = tf.get_variable('w2', [3,3,64,128], trainable=FLAGS.trainable)
b2 = tf.get_variable('b2', initializer=tf.constant(0.1, shape=[128]), trainable=FLAGS.trainable)
h2 = tf.nn.relu(conv2d_s2(h1_pool,w2)+b2)
h2_pool = max_pool_2x2(h2)
w3 = tf.get_variable('w3', [3,3,128,128], trainable=FLAGS.trainable)
b3 = tf.get_variable('b3', initializer=tf.constant(0.1, shape=[128]), trainable=FLAGS.trainable)
h3 = tf.nn.relu(conv2d_s1(h2_pool,w3)+b3)
w4 = tf.get_variable('w4', [3,3,128,128], trainable=FLAGS.trainable)
b4 = tf.get_variable('b4', initializer=tf.constant(0.1, shape=[128]), trainable=FLAGS.trainable)
h4 = tf.nn.relu(conv2d_s1(h3,w4)+b4)
w5 = tf.get_variable('w5', [3,3,128,256], trainable=FLAGS.trainable)
b5 = tf.get_variable('b5', initializer=tf.constant(0.1, shape=[256]), trainable=FLAGS.trainable)
h5 = tf.nn.relu(conv2d_s1(h4,w5)+b5)
h5_pool = max_pool_2x2(h5)
w_fc1 = tf.get_variable('w_fc1', [7*7*256,512], trainable=FLAGS.trainable)
b_fc1 = tf.get_variable('b_fc1', initializer=tf.constant(0.1, shape=[512]), trainable=FLAGS.trainable)
h5_flat = tf.reshape(h5_pool, [-1, 7*7*256])
h_fc1 = tf.nn.relu(tf.matmul(h5_flat,w_fc1)+b_fc1)
h_fc1_dropout = tf.nn.dropout(h_fc1, keep_prob)
w_fc2 = tf.get_variable('w_fc2', [512,512], trainable=FLAGS.trainable)
b_fc2 = tf.get_variable('b_fc2', initializer=tf.constant(0.1, shape=[512]), trainable=FLAGS.trainable)
h_fc2 = tf.nn.relu(tf.matmul(h_fc1_dropout, w_fc2)+b_fc2)
h_fc2_dropout = tf.nn.dropout(h_fc2, keep_prob)
w_output = tf.get_variable('w_output', [512, 1000], trainable=FLAGS.trainable)
b_output = tf.get_variable('b_output', [1000])
output = tf.matmul(h_fc2_dropout,w_output)+b_output
return output