-
Notifications
You must be signed in to change notification settings - Fork 70
/
cnn_ssd_detection.py
294 lines (208 loc) · 9.67 KB
/
cnn_ssd_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#####################################################################
# Example : perform live object detectoon using a pre-trained SSD CNN model
# and display from a video file specified on the command line
# (e.g. python FILE.py video_file) or from an attached web camera
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2017 Department of Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
# based on provided examples at:
# https://github.com/opencv/opencv/tree/master/samples/dnn
# see here for how to load Caffe/TensorFlow/... models etc.
# implements a version of:
# MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Apps.
# Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
# Tobias Weyand, Marco Andreetto, Hartwig Adam
# research paper: https://arxiv.org/abs/1704.04861
# requires Caffe network model files (.prototxt / .caffemodel) downloaded from:
# https://github.com/chuanqi305/MobileNet-SSD/
#####################################################################
import cv2
import argparse
import sys
import math
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
cnn_model_to_load = "MobileNetSSD_deploy"
#####################################################################
def trackbar_callback(pos):
global confidence_threshold
confidence_threshold = pos / 100.0
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Live Object Detection - CNN: " + cnn_model_to_load
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
# add track bar to window for confidence threshold
confidence_threshold = 0.7
cv2.createTrackbar('Confidence threshold, %', window_name, int(
confidence_threshold * 100), 99, trackbar_callback)
# init CNN model - here from Caffe, although OpenCV can import from
# mosyt deep learning templates
net = cv2.dnn.readNetFromCaffe(
cnn_model_to_load + ".prototxt",
cnn_model_to_load + ".caffemodel")
# provide mappings from class numbers to string labels - these are the
# PASCAL VOC classees
classNames = {0: 'background',
1: 'aeroplane', 2: 'bicycle', 3: 'bird', 4: 'boat',
5: 'bottle', 6: 'bus', 7: 'car', 8: 'cat', 9: 'chair',
10: 'cow', 11: 'diningtable', 12: 'dog', 13: 'horse',
14: 'motorbike', 15: 'person', 16: 'pottedplant',
17: 'sheep', 18: 'sofa', 19: 'train', 20: 'tvmonitor'}
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# get size of input
cols = frame.shape[1]
rows = frame.shape[0]
# transform the image into a network input "blob" (i.e. tensor)
# by scaling the image to the input size of the network, in this case
# not swapping the R and G channels (i.e. used when network trained on
# RGB and not the BGR of OpenCV) and re-scaling the inputs from 0->255
# to 0->1 by specifing the mean value for each channel
swapRBchannels = False # do not swap channels
crop = False # crop image or not
meanChannelVal = 255.0 / 2.0 # mean channel value
inWidth = 300 # network input width
inHeight = 300 # network input height
inScaleFactor = 0.007843 # input scale factor
blob = cv2.dnn.blobFromImage(
frame,
inScaleFactor,
(inWidth,
inHeight),
(meanChannelVal,
meanChannelVal,
meanChannelVal),
swapRBchannels,
crop)
# set this transformed image -> tensor blob as the network input
net.setInput(blob)
# perform forward inference on the network
detections = net.forward()
# process the detections from the CNN to give bounding boxes
# i.e. for each detection returned from the network
for i in range(detections.shape[2]):
# extract the confidence of the detection
confidence = detections[0, 0, i, 2]
# provided that is above a threshold
if confidence > confidence_threshold:
# get the class number id and the bounding box
class_id = int(detections[0, 0, i, 1])
xLeftBottom = int(detections[0, 0, i, 3] * cols)
yLeftBottom = int(detections[0, 0, i, 4] * rows)
xRightTop = int(detections[0, 0, i, 5] * cols)
yRightTop = int(detections[0, 0, i, 6] * rows)
# draw the bounding box on the frame
cv2.rectangle(frame, (xLeftBottom, yLeftBottom),
(xRightTop, yRightTop), (0, 255, 0))
# look up the class name based on the class id and draw it on
# the frame also
if class_id in classNames:
label = classNames[class_id] + (": %.2f" % confidence)
labelSize, baseLine = cv2.getTextSize(
label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
yLeftBottom = max(yLeftBottom, labelSize[1])
cv2.rectangle(
frame, (
xLeftBottom, yLeftBottom -
labelSize[1]
), (
xLeftBottom + labelSize[0],
yLeftBottom + baseLine
), (255, 255, 255),
cv2.FILLED
)
cv2.putText(frame, label, (xLeftBottom, yLeftBottom),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
# Display efficiency information - the function getPerfProfile returns
# the overall time for inference from the network
t, _ = net.getPerfProfile()
inference_t = (t * 1000.0 / cv2.getTickFrequency())
label = ('Inference time: %.2f ms' % inference_t) + \
(' (Framerate: %.2f fps' % (1000 / inference_t)) + ')'
cv2.putText(frame, label, (0, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# display image
cv2.imshow(window_name, frame)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# ms). It waits for specified milliseconds for any keyboard event.
# If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response)
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_name,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################