-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathfcn_segmentation.py
327 lines (234 loc) · 9.74 KB
/
fcn_segmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
##########################################################################
# Example : perform FCN semantic image segmentation from a video file
# specified on the command line (e.g. python FILE.py video_file) or from an
# attached web camera (FCN segmentation: Long et al, CVPR 2015)
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# This code: significant portions based on the example available at:
# https://github.com/opencv/opencv/blob/master/samples/dnn/segmentation.py
# Copyright (c) 2021 Toby Breckon, Dept. Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
##########################################################################
# To use download the following files:
# http://dl.caffe.berkeleyvision.org/fcn8s-heavy-pascal.caffemodel
# https://raw.githubusercontent.com/opencv/opencv_extra/master/testdata/dnn/fcn8s-heavy-pascal.prototxt
# https://raw.githubusercontent.com/opencv/opencv/master/samples/data/dnn/object_detection_classes_pascal_voc.txt
##########################################################################
import cv2
import argparse
import sys
import math
import numpy as np
##########################################################################
keep_processing = True
colors = None
##########################################################################
# generate and display colour legend for segmentation classes
def generate_legend(classes, height):
blockHeight = math.floor(height/len(classes))
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
for i in range(len(classes)):
block = legend[i * blockHeight:(i + 1) * blockHeight]
block[:, :] = colors[i]
cv2.putText(block, classes[i],
(0, blockHeight//2),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
return legend
##########################################################################
# concatenate two RGB/grayscale images horizontally (left to right)
# handling differing channel numbers or image heights in the input
def h_concatenate(img1, img2):
# get size and channels for both images
height1 = img1.shape[0]
if (len(img1.shape) == 2):
channels1 = 1
else:
channels1 = img1.shape[2]
height2 = img2.shape[0]
width2 = img2.shape[1]
if (len(img2.shape) == 2):
channels2 = 1
else:
channels2 = img2.shape[2]
# make all images 3 channel, or assume all same channel
if ((channels1 > channels2) and (channels1 == 3)):
out2 = cv2.cvtColor(img2, cv2.COLOR_GRAY2BGR)
out1 = img1
elif ((channels2 > channels1) and (channels2 == 3)):
out1 = cv2.cvtColor(img1, cv2.COLOR_GRAY2BGR)
out2 = img2
else: # both must be equal
out1 = img1
out2 = img2
# height of first image is master height, width can remain unchanged
if (height1 != height2):
out2 = cv2.resize(out2, (width2, height1))
return np.hstack((out1, out2))
##########################################################################
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-fs",
"--fullscreen",
action='store_true',
help="run in full screen mode")
parser.add_argument(
"-use",
"--target",
type=str,
choices=['cpu', 'gpu', 'opencl'],
help="select computational backend",
default='gpu')
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
##########################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream()
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "FCN Semantic Image Segmentation" # window name
##########################################################################
# Load names of class labels (background = class 0, for PASCAL VOC)
classes = None
with open("object_detection_classes_pascal_voc.txt", 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
classes.insert(0, "background") # insery a background class as 0
##########################################################################
# Load CNN model
net = cv2.dnn.readNet(
"fcn8s-heavy-pascal.caffemodel",
"fcn8s-heavy-pascal.prototxt",
'caffe')
# set up compute target as one of [GPU, OpenCL, CPU]
if (args.target == 'gpu'):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
elif (args.target == 'opencl'):
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_OPENCL)
else:
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_DEFAULT)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
##########################################################################
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if camera /video file successfully open then read frame
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
frameHeight = frame.shape[0]
frameWidth = frame.shape[1]
#######################################################################
# FCN Segmentation:
# model: "fcn8s-heavy-pascal.caffemodel"
# config: "fcn8s-heavy-pascal.prototxt"
# mean: [0, 0, 0]
# scale: 1.0
# width: 500
# height: 500
# rgb: false
#
# classes: object_detection_classes_pascal_voc.txt
#######################################################################
# create a 4D tensor "blob" from a frame.
blob = cv2.dnn.blobFromImage(
frame, scalefactor=1.0,
size=(500, 500), mean=[0, 0, 0],
swapRB=False, crop=False
)
# Run forward inference on the model
net.setInput(blob)
result = net.forward()
numClasses = result.shape[1]
height = result.shape[2]
width = result.shape[3]
# define colours
if not colors:
np.random.seed(888)
colors = [np.array([0, 0, 0], np.uint8)]
for i in range(1, numClasses + 1):
colors.append((colors[i - 1] +
np.random.randint(0, 256, [3],
np.uint8)) / 2
)
del colors[0]
# generate legend
legend = generate_legend(classes, frameHeight)
# display segmentation
classIds = np.argmax(result[0], axis=0)
segm = np.stack([colors[idx] for idx in classIds.flatten()])
segm = segm.reshape(height, width, 3)
segm = cv2.resize(segm, (frameWidth, frameHeight),
interpolation=cv2.INTER_NEAREST)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# Display efficiency information
label = ('Inference time: %.2f ms' % stop_t) + \
(' (Framerate: %.2f fps' % (1000 / stop_t)) + ')'
cv2.putText(frame, label, (0, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# display image(s) as concatenated single image
cv2.imshow(window_name,
h_concatenate(h_concatenate(frame, segm.astype(np.uint8)),
legend))
cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN & args.fullscreen)
# start the event loop - essential
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# if user presses "x" then exit / press "f" for fullscreen display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
args.fullscreen = not (args.fullscreen)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
##########################################################################