-
Notifications
You must be signed in to change notification settings - Fork 70
/
gaussian.py
206 lines (144 loc) · 5.91 KB
/
gaussian.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#####################################################################
# Example : gaussian smoothing for a a video file specified on the
# command line (e.g. python FILE.py video_file) or from an
# attached web camera with selectable opencl acceleration
# Author : Toby Breckon, toby.breckon@durham.ac.uk
# Copyright (c) 2021 Dept Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import math
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
"-ocl",
"--opencl",
action='store_true',
help="enable opencl hardware acceleration")
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream(use_tapi=args.opencl)
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Live Camera Input" # window name
window_name2 = "Gaussian Smoothing" # window name
# setup OpenCL if specified on command line only
cv2.ocl.setUseOpenCL(args.opencl)
# if command line arguments are provided try to read video_name
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create window by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_name2, cv2.WINDOW_NORMAL)
# add some track bar controllers for settings
smoothing_neighbourhood = 3
cv2.createTrackbar(
"kernel size",
window_name2,
smoothing_neighbourhood,
250,
nothing)
while (keep_processing):
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# if video file successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read() # rescale if specified
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# get parameters from track bars
smoothing_neighbourhood = cv2.getTrackbarPos("kernel size",
window_name2)
# check neighbourhood is greater than 3 and odd
smoothing_neighbourhood = max(3, smoothing_neighbourhood)
if not (smoothing_neighbourhood % 2):
smoothing_neighbourhood = smoothing_neighbourhood + 1
# performing smoothing on the image using a 5x5 smoothing mark (see
# manual entry for GaussianBlur())
smoothed = cv2.GaussianBlur(frame, (smoothing_neighbourhood,
smoothing_neighbourhood), 0)
# stop the timer and convert to ms. (to see how long processing and
# display takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
label = ('Processing time: %.2f ms' % stop_t) + \
(' (Framerate: %.2f fps' % (1000 / stop_t)) + ')'
cv2.putText(smoothed, label, (0, 15),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255))
# display image
cv2.imshow(window_name, frame)
cv2.imshow(window_name2, smoothed)
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# milliseconds). It waits for specified milliseconds for any keyboard
# event. If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response)
# wait 40ms or less depending on processing time taken (i.e. 1000ms /
# 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit / press "f" for fullscreen
# display
if (key == ord('x')):
keep_processing = False
elif (key == ord('f')):
cv2.setWindowProperty(
window_name2,
cv2.WND_PROP_FULLSCREEN,
cv2.WINDOW_FULLSCREEN)
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################