Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

invalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [37007] rhs shape= [12003] #15

Open
SeekPoint opened this issue Feb 11, 2018 · 1 comment

Comments

@SeekPoint
Copy link

(venv) xxx590cc37a5:conv_seq2seq xxx.xxx$
(venv) xxx590cc37a5:conv_seq2seq xxx.xxx$ python -m bin.train --config_paths="example_configs/conv_seq2seq.yml,example_configs/train_seq2seq.yml,example_configs/text_metrics_bpe.yml" \

--model_params "
vocab_source: vocab.bpe.32000
vocab_target: vocab.bpe.32000"
--input_pipeline_train "
class: ParallelTextInputPipelineFairseq
params:
source_files: train.tok.clean.bpe.32000.en
target_files: train.tok.clean.bpe.32000.de"
--input_pipeline_dev "
class: ParallelTextInputPipelineFairseq
params:
source_files: newstest2013.tok.bpe.32000.en
target_files: newstest2013.tok.bpe.32000.de"
--batch_size 32
--eval_every_n_steps 5000
--train_steps 1000000
--output_dir models \

INFO:tensorflow:Loading config from /Users/xxx.xxx/xxx_prj/conv_seq2seq/example_configs/conv_seq2seq.yml
INFO:tensorflow:Loading config from /Users/xxx.xxx/xxx_prj/conv_seq2seq/example_configs/train_seq2seq.yml
INFO:tensorflow:Loading config from /Users/xxx.xxx/xxx_prj/conv_seq2seq/example_configs/text_metrics_bpe.yml
INFO:tensorflow:Final Config:
bucxxxts: 10,20,30,40
default_params:

  • {separator: ' '}
  • {postproc_fn: seq2seq.data.postproc.strip_bpe}
    hooks:
  • {class: PrintModelAnalysisHook}
  • {class: MetadataCaptureHook}
  • {class: SyncReplicasOptimizerHook}
  • class: TrainSampleHook
    params: {every_n_steps: 1000}
    metrics:
  • {class: LogPerplexityMetricSpec}
    model: ConvSeq2Seq
    model_params:
    decoder.class: seq2seq.decoders.ConvDecoderFairseq
    decoder.params: {cnn.kwidths: '3,3,3', cnn.layers: 3, cnn.nhids: '256,256,256'}
    embedding.dim: 256
    encoder.class: seq2seq.encoders.ConvEncoderFairseq
    encoder.params: {cnn.kwidths: '3,3,3,3', cnn.layers: 4, cnn.nhids: '256,256,256,256'}
    optimizer.clip_gradients: 0.1
    optimizer.learning_rate: 0.25
    optimizer.name: Momentum
    optimizer.params: {momentum: 0.99, use_nesterov: true}
    source.max_seq_len: 50
    source.reverse: false
    target.max_seq_len: 50

WARNING:tensorflow:Ignoring config flag: default_params
INFO:tensorflow:Setting save_checkpoints_secs to 600
INFO:tensorflow:Creating ParallelTextInputPipelineFairseq in mode=train
INFO:tensorflow:
ParallelTextInputPipelineFairseq:
!!python/unicode 'num_epochs': null
!!python/unicode 'shuffle': true
!!python/unicode 'source_delimiter': !!python/unicode ' '
!!python/unicode 'source_files': [t, r, a, i, n, ., t, o, k, ., c, l, e, a, n, .,
b, p, e, ., '3', '2', '0', '0', '0', ., e, n]
!!python/unicode 'target_delimiter': !!python/unicode ' '
!!python/unicode 'target_files': [t, r, a, i, n, ., t, o, k, ., c, l, e, a, n, .,
b, p, e, ., '3', '2', '0', '0', '0', ., d, e]

INFO:tensorflow:Creating ParallelTextInputPipelineFairseq in mode=eval
INFO:tensorflow:
ParallelTextInputPipelineFairseq:
!!python/unicode 'num_epochs': 1
!!python/unicode 'shuffle': false
!!python/unicode 'source_delimiter': !!python/unicode ' '
!!python/unicode 'source_files': [n, e, w, s, t, e, s, t, '2', '0', '1', '3', .,
t, o, k, ., b, p, e, ., '3', '2', '0', '0', '0', ., e, n]
!!python/unicode 'target_delimiter': !!python/unicode ' '
!!python/unicode 'target_files': [n, e, w, s, t, e, s, t, '2', '0', '1', '3', .,
t, o, k, ., b, p, e, ., '3', '2', '0', '0', '0', ., d, e]

INFO:tensorflow:Using config: {'_save_checkpoints_secs': 600, '_num_ps_replicas': 0, '_xxxep_checkpoint_max': 5, '_tf_random_seed': None, '_task_type': None, '_environment': 'local', '_is_chief': True, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x11b951e90>, '_tf_config': gpu_options {
per_process_gpu_memory_fraction: 1.0
}
, '_task_id': 0, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_evaluation_master': '', '_xxxep_checkpoint_every_n_hours': 4, '_master': ''}
INFO:tensorflow:Creating PrintModelAnalysisHook in mode=train
INFO:tensorflow:
PrintModelAnalysisHook: {}

INFO:tensorflow:Creating MetadataCaptureHook in mode=train
INFO:tensorflow:
MetadataCaptureHook: {!!python/unicode 'step': 10}

INFO:tensorflow:Creating SyncReplicasOptimizerHook in mode=train
INFO:tensorflow:
SyncReplicasOptimizerHook: {}

INFO:tensorflow:Creating TrainSampleHook in mode=train
INFO:tensorflow:
TrainSampleHook: {!!python/unicode 'every_n_secs': null, !!python/unicode 'every_n_steps': 1000,
!!python/unicode 'source_delimiter': !!python/unicode ' ', !!python/unicode 'target_delimiter': !!python/unicode ' '}

INFO:tensorflow:Creating LogPerplexityMetricSpec in mode=eval
INFO:tensorflow:
LogPerplexityMetricSpec: {}

INFO:tensorflow:Training model for 5000 steps
INFO:tensorflow:Creating ConvSeq2Seq in mode=train
INFO:tensorflow:
ConvSeq2Seq:
!!python/unicode 'decoder.class': !!python/unicode 'seq2seq.decoders.ConvDecoderFairseq'
!!python/unicode 'decoder.params': {cnn.kwidths: '3,3,3', cnn.layers: 3, cnn.nhids: '256,256,256'}
!!python/unicode 'embedding.dim': 256
!!python/unicode 'embedding.init_scale': 0.04
!!python/unicode 'embedding.share': false
!!python/unicode 'encoder.class': !!python/unicode 'seq2seq.encoders.ConvEncoderFairseq'
!!python/unicode 'encoder.params': {cnn.kwidths: '3,3,3,3', cnn.layers: 4, cnn.nhids: '256,256,256,256'}
!!python/unicode 'inference.beam_search.beam_width': 0
!!python/unicode 'inference.beam_search.choose_successors_fn': !!python/unicode 'choose_top_k'
!!python/unicode 'inference.beam_search.length_penalty_weight': 1.0
!!python/unicode 'optimizer.clip_embed_gradients': 5
!!python/unicode 'optimizer.clip_gradients': 0.1
!!python/unicode 'optimizer.learning_rate': 0.25
!!python/unicode 'optimizer.lr_decay_rate': 0.9
!!python/unicode 'optimizer.lr_decay_steps': 5000
!!python/unicode 'optimizer.lr_decay_type': !!python/unicode 'exponential_decay'
!!python/unicode 'optimizer.lr_min_learning_rate': 1.0e-05
!!python/unicode 'optimizer.lr_staircase': true
!!python/unicode 'optimizer.lr_start_decay_at': 0
!!python/unicode 'optimizer.lr_stop_decay_at': 2147483647
!!python/unicode 'optimizer.name': !!python/unicode 'Momentum'
!!python/unicode 'optimizer.params': {!!python/unicode 'momentum': 0.99, !!python/unicode 'use_nesterov': true}
!!python/unicode 'optimizer.sync_replicas': 0
!!python/unicode 'optimizer.sync_replicas_to_aggregate': 0
!!python/unicode 'position_embeddings.num_positions': 100
!!python/unicode 'source.max_seq_len': 50
!!python/unicode 'source.reverse': false
!!python/unicode 'target.max_seq_len': 50
!!python/unicode 'vocab_source': !!python/unicode 'vocab.bpe.32000'
!!python/unicode 'vocab_target': !!python/unicode 'vocab.bpe.32000'

INFO:tensorflow:Creating vocabulary lookup table of size 37007
INFO:tensorflow:Creating vocabulary lookup table of size 37007
INFO:tensorflow:Creating ConvEncoderFairseq in mode=train
INFO:tensorflow:
ConvEncoderFairseq: {cnn.kwidth_default: 3, cnn.kwidths: '3,3,3,3', cnn.layers: 4,
cnn.nhid_default: 256, cnn.nhids: '256,256,256,256', embedding_dropout_xxxep_prob: 0.9,
nhid_dropout_xxxep_prob: 0.9, position_embeddings.combiner_fn: tensorflow.add, position_embeddings.enable: true}

INFO:tensorflow:Creating ConvDecoderFairseq in mode=train
INFO:tensorflow:
ConvDecoderFairseq: {!!python/unicode 'cnn.kwidth_default': 3, !!python/unicode 'cnn.kwidths': !!python/unicode '3,3,3',
!!python/unicode 'cnn.layers': 3, !!python/unicode 'cnn.nhid_default': 256, !!python/unicode 'cnn.nhids': !!python/unicode '256,256,256',
!!python/unicode 'embedding_dropout_xxxep_prob': 0.9, !!python/unicode 'max_decode_length': 49,
!!python/unicode 'nhid_dropout_xxxep_prob': 0.9, !!python/unicode 'nout_embed': 256,
!!python/unicode 'out_dropout_xxxep_prob': 0.9, !!python/unicode 'position_embeddings.combiner_fn': !!python/unicode 'tensorflow.add',
!!python/unicode 'position_embeddings.enable': true}

INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/V/read:0", shape=(256, 256), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/V:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/g/read:0", shape=(256,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/g:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/b/read:0", shape=(256,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/b:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/V/read:0", shape=(3, 256, 512), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/V:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/g/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/g:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/b/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/b:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/V/read:0", shape=(3, 256, 512), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/V:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/g/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/g:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/b/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/b:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/V/read:0", shape=(3, 256, 512), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/V:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/g/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/g:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/b/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/b:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/V/read:0", shape=(3, 256, 512), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/V:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/g/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/g:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/b/read:0", shape=(512,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/b:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/V/read:0", shape=(256, 256), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/V:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/g/read:0", shape=(256,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/g:0
INFO:tensorflow:tensor Tensor("model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/b/read:0", shape=(256,), dtype=float32), name is model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/b:0
INFO:tensorflow:Create CheckpointSaverHook.
47 ops no flops stats due to incomplete shapes. Consider passing run_meta to use run_time shapes.
Parsing GraphDef...
Parsing RunMetadata...
Parsing OpLog...
Preparing Views...
INFO:tensorflow:_TFProfRoot (--/31.97m params)
model/conv_seq2seq/Variable (0/0 params)
model/conv_seq2seq/decode/W (37007x256, 9.47m/9.47m params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_0/linear_mapping_att_out/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_0/linear_mapping_att_out/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_0/linear_mapping_att_out/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_0/linear_mapping_att_query/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_0/linear_mapping_att_query/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_0/linear_mapping_att_query/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_1/linear_mapping_att_out/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_1/linear_mapping_att_out/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_1/linear_mapping_att_out/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_1/linear_mapping_att_query/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_1/linear_mapping_att_query/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_1/linear_mapping_att_query/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_2/linear_mapping_att_out/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_2/linear_mapping_att_out/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_2/linear_mapping_att_out/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_2/linear_mapping_att_query/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_2/linear_mapping_att_query/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/attention_layer_2/linear_mapping_att_query/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_0/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_0/b (512, 512/512 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_0/g (512, 512/512 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_1/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_1/b (512, 512/512 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_1/g (512, 512/512 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_2/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_2/b (512, 512/512 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/conv_layer_2/g (512, 512/512 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/linear_mapping_before_cnn/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/linear_mapping_before_cnn/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/decoder_cnn/linear_mapping_before_cnn/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/linear_mapping_after_cnn/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/linear_mapping_after_cnn/b (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/linear_mapping_after_cnn/g (256, 256/256 params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/V (256x37007, 9.47m/9.47m params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/b (37007, 37.01k/37.01k params)
model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/g (37007, 37.01k/37.01k params)
model/conv_seq2seq/decode/pos (100x256, 25.60k/25.60k params)
model/conv_seq2seq/encode/W (37007x256, 9.47m/9.47m params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/b (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_0/g (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/b (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_1/g (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/b (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_2/g (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/V (3x256x512, 393.22k/393.22k params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/b (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/conv_layer_3/g (512, 512/512 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/b (256, 256/256 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_after_cnn/g (256, 256/256 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/V (256x256, 65.54k/65.54k params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/b (256, 256/256 params)
model/conv_seq2seq/encode/conv_encoder/encoder_cnn/linear_mapping_before_cnn/g (256, 256/256 params)
model/conv_seq2seq/encode/pos (100x256, 25.60k/25.60k params)

W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.1 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use AVX2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:45] The TensorFlow library wasn't compiled to use FMA instructions, but these are available on your machine and could speed up CPU computations.
Traceback (most recent call last):
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"main", fname, loader, pkg_name)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/Users/xxx.xxx/xxx_prj/conv_seq2seq/bin/train.py", line 277, in
tf.app.run()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/Users/xxx.xxx/xxx_prj/conv_seq2seq/bin/train.py", line 272, in main
schedule=FLAGS.schedule)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/learn_runner.py", line 106, in run
return task()
File "seq2seq/contrib/experiment.py", line 104, in continuous_train_and_eval
monitors=self._train_monitors)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/util/deprecation.py", line 280, in new_func
return func(*args, **kwargs)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 426, in fit
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 981, in _train_model
config=self.config.tf_config) as mon_sess:
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 315, in MonitoredTrainingSession
return MonitoredSession(session_creator=session_creator, hooks=all_hooks)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 601, in init
session_creator, hooks, should_recover=True)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 434, in init
self._sess = _RecoverableSession(self._coordinated_creator)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 767, in init
_WrappedSession.init(self, self._create_session())
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 772, in _create_session
return self._sess_creator.create_session()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 494, in create_session
self.tf_sess = self._session_creator.create_session()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 375, in create_session
init_fn=self._scaffold.init_fn)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/session_manager.py", line 256, in prepare_session
config=config)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/session_manager.py", line 188, in _restore_checkpoint
saver.restore(sess, ckpt.model_checkpoint_path)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1428, in restore
{self.saver_def.filename_tensor_name: save_path})
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 767, in run
run_metadata_ptr)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 965, in _run
feed_dict_string, options, run_metadata)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1015, in _do_run
target_list, options, run_metadata)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1035, in _do_call
raise type(e)(node_def, op, message)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Assign requires shapes of both tensors to match. lhs shape= [37007] rhs shape= [12003]
[[Node: save/Assign_96 = Assign[T=DT_FLOAT, _class=["loc:@model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/b"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/cpu:0"](model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/b, save/RestoreV2_96)]]

Caused by op u'save/Assign_96', defined at:
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/runpy.py", line 162, in _run_module_as_main
"main", fname, loader, pkg_name)
File "/System/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/runpy.py", line 72, in _run_code
exec code in run_globals
File "/Users/xxx.xxx/xxx_prj/conv_seq2seq/bin/train.py", line 277, in
tf.app.run()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/platform/app.py", line 44, in run
_sys.exit(main(_sys.argv[:1] + flags_passthrough))
File "/Users/xxx.xxx/xxx_prj/conv_seq2seq/bin/train.py", line 272, in main
schedule=FLAGS.schedule)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/learn_runner.py", line 106, in run
return task()
File "seq2seq/contrib/experiment.py", line 104, in continuous_train_and_eval
monitors=self._train_monitors)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/util/deprecation.py", line 280, in new_func
return func(*args, **kwargs)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 426, in fit
loss = self._train_model(input_fn=input_fn, hooks=hooks)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/contrib/learn/python/learn/estimators/estimator.py", line 981, in _train_model
config=self.config.tf_config) as mon_sess:
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 315, in MonitoredTrainingSession
return MonitoredSession(session_creator=session_creator, hooks=all_hooks)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 601, in init
session_creator, hooks, should_recover=True)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 434, in init
self._sess = _RecoverableSession(self._coordinated_creator)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 767, in init
_WrappedSession.init(self, self._create_session())
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 772, in _create_session
return self._sess_creator.create_session()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 494, in create_session
self.tf_sess = self._session_creator.create_session()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 366, in create_session
self._scaffold.finalize()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/monitored_session.py", line 183, in finalize
self._saver.build()
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 1070, in build
restore_sequentially=self._restore_sequentially)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 671, in build
restore_sequentially, reshape)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 445, in _AddShardedRestoreOps
name="restore_shard"))
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 414, in _AddRestoreOps
assign_ops.append(saveable.restore(tensors, shapes))
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/training/saver.py", line 155, in restore
self.op.get_shape().is_fully_defined())
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/ops/gen_state_ops.py", line 47, in assign
use_locking=use_locking, name=name)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 763, in apply_op
op_def=op_def)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 2327, in create_op
original_op=self._default_original_op, op_def=op_def)
File "/Users/xxx.xxx/xxx_prj/ve_tf1.0_py2/venv/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 1226, in init
self._traceback = _extract_stack()

InvalidArgumentError (see above for traceback): Assign requires shapes of both tensors to match. lhs shape= [37007] rhs shape= [12003]
[[Node: save/Assign_96 = Assign[T=DT_FLOAT, _class=["loc:@model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/b"], use_locking=true, validate_shape=true, _device="/job:localhost/replica:0/task:0/cpu:0"](model/conv_seq2seq/decode/conv_decoder_fairseq/decoder/softmax/logits_before_softmax/b, save/RestoreV2_96)]]

@tobyyouup
Copy link
Owner

@lovejasmine Have you load the correct checkpoint? Or can you try on a new folder without loading an existing checkpoint?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants