Given n
pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given ~n = 3~, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()",
]
Not a lot of thought here. Just the idea that 3
parens is simply all the combinations returned by 2
parens and then surrounded by parentheses., prepended by parentheses., and appended with parentheses. Just de-dupe the entire thing and we’re done.
(require racket/generator)
(require racket/format)
(define (parens-combos n)
(in-generator
(let recur ([prefix ""]
[n n]
[suffix ""])
(define (again new-prefix new-suffix)
(recur (~a prefix new-prefix) (sub1 n) (~a new-suffix suffix)))
(cond
[(< n 1) (yield (~a prefix suffix))]
[(eq? n 1) (again "()" "")]
[else (again "(" ")")
(again "()" "")
(again "" "()")]))))
(list->set (sequence->list (parens-combos 3)))
(set "(())()" "((()))" "()(())" "()()()" "(()())")
const parensCombos = function * (n) {
if(n < 1)
return
if(n === 1) {
yield `()`
return
}
for(const innerCombo of parensCombos(n-1)) {
yield `(${innerCombo})`
yield `()${innerCombo}`
yield `${innerCombo}()`
}
}
return [...new Set(parensCombos(3))]
((())) | ()(()) | (())() | (()()) | ()()() |