Skip to content

Latest commit

 

History

History
127 lines (64 loc) · 8.47 KB

参考文献.md

File metadata and controls

127 lines (64 loc) · 8.47 KB

参考文献

[1] 卧卧网络平台.同济量子力学,量子力学发展史(1)[OL] . 2019.3.14.

[2] 卧卧网络平台.同济量子力学,量子力学发展史(2)[OL] . 2019.3.18.

[3] 卧卧网络平台.同济量子力学,量子力学发展史(4)[OL] . 2019.3.22.

[4] 卧卧网络平台.同济量子力学,量子力学发展史(3)[OL] . 2019.3.21.

[5] 郭光灿,张昊,王琴. 量子信息技术发展概况[J]. 南京邮电大学学报(自然科学版),2017,37(03):1-14.

[6] Devoret, Michel H., and Robert J. Schoelkopf. "Superconducting circuits for quantum information: an outlook." Science 339.6124 (2013): 1169-1174.

[7] DiCarlo, L., et al. "Demonstration of two-qubit algorithms with a superconducting quantum processor." Nature 460.7252 (2009): 240.

[8]Kelly, Julian, et al. "State preservation by repetitive error detection in a superconducting quantum circuit." Nature 519.7541 (2015): 66.

[9]O’Malley, P. J. J., et al. "Scalable quantum simulation of molecular energies." Physical Review X 6.3 (2016): 031007.

[10]Neill, C., et al. "A blueprint for demonstrating quantum supremacy with superconducting qubits." Science 360.6385 (2018): 195-199.

[11]Kandala, Abhinav, et al. "Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets." Nature 549.7671 (2017): 242.

[12] Otterbach, J. S., et al. "Unsupervised Machine Learning on a Hybrid Quantum Computer." arXiv preprint arXiv:1712.05771(2017).

[13] Song, Chao, et al. "10-qubit entanglement and parallel logic operations with a superconducting circuit." Physical review letters 119.18 (2017): 180511.

[14]Zhao, Peng, et al. "Circuit QED with qutrits: Coupling three or more atoms via virtual-photon exchange." Physical Review A 96.4 (2017): 043833.

[15]Wang, Tenghui, et al. "The experimental realization of high-fidelityshortcut-to-adiabaticity'quantum gates in a superconducting Xmon qubit." arXiv preprint arXiv:1804.08247 (2018).

[16]Li, Hai-Ou, et al. "Controlled Quantum Operations of a Semiconductor Three-Qubit System." Physical Review Applied 9.2 (2018): 024015.

[17] Zajac, David M., et al. "Resonantly driven CNOT gate for electron spins." Science 359.6374 (2018): 439-442.

[18] Muhonen, Juha T., et al. "Storing quantum information for 30 seconds in a nanoelectronic device." Nature nanotechnology9.12 (2014): 986.

[19] Veldhorst, Menno, et al. "A two-qubit logic gate in silicon." Nature 526.7573 (2015): 410.

[20] Watson, T. F., et al. "A programmable two-qubit quantum processor in silicon." Nature (2018).

[21] Yoneda, Jun, et al. "A quantum-dot spin qubit with coherence limited by charge noise and fidelity higher than 99.9%." Nature nanotechnology 13.2 (2018): 102.

[22] Cao, Gang, et al. "Ultrafast universal quantum control of a quantum-dot charge qubit using Landau–Zener–Stückelberg interference." Nature communications 4 (2013): 1401.

[23] Li, Hai-Ou, et al. "Conditional rotation of two strongly coupled semiconductor charge qubits." Nature communications 6 (2015): 7681.

[24] Cao, Gang, et al. "Tunable hybrid qubit in a GaAs double quantum dot." Physical review letters 116.8 (2016): 086801.

[25] Gulde, Stephan, et al. "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer." Nature 421.6918 (2003): 48.

[26] Monroe, Christopher, and Jungsang Kim. "Scaling the ion trap quantum processor." Science 339.6124 (2013): 1164-1169.

[27] Debnath, Shantanu, et al. "Demonstration of a small programmable quantum computer with atomic qubits." Nature 536.7614 (2016): 63.

[28]Linke, Norbert M., et al. "Experimental comparison of two quantum computing architectures." Proceedings of the National Academy of Sciences (2017): 201618020.

[19]Zhang, Jiehang, et al. "Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator." Nature 551.7682 (2017): 601.

[30] Schäfer, V. M., et al. "Fast quantum logic gates with trapped-ion qubits." Nature 555.7694 (2018): 75

[31] Zhang, Xiang, et al. "Experimental quantum simulation of fermion-antifermion scattering via boson exchange in a trapped ion." Nature communications 9.1 (2018): 195.

[32] Cui, Jin-Ming, et al. "Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space." Scientific reports 6 (2016): 33381.

[33]Weiss, David S., and Mark Saffman. "Quantum computing with neutral atoms." Physics Today 70.7 (2017): 44.

[34]Theis, L. S., et al. "High-fidelity Rydberg-blockade entangling gate using shaped, analytic pulses." Physical Review A 94.3 (2016): 032306.

[35]Dai, Han-Ning, et al. "Generation and detection of atomic spin entanglement in optical lattices." Nature Physics 12.8 (2016): 783.

[36] Bloch, Immanuel, Jean Dalibard, and Wilhelm Zwerger. "Many-body physics with ultracold gases." Reviews of modern physics 80.3 (2008): 885.

[37]Bernien, Hannes, et al. "Probing many-body dynamics on a 51-atom quantum simulator." Nature 551.7682 (2017): 579.

[38] Wu, Zhan, et al. "Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates." Science 354.6308 (2016): 83-88.

[39] Gershenfeld, Neil A., and Isaac L. Chuang. "Bulk spin-resonance quantum computation." science 275.5298 (1997): 350-356.

[40] Jones, Jonathan A., Michele Mosca, and Rasmus H. Hansen. "Implementation of a quantum search algorithm on a quantum computer." Nature 393.6683 (1998): 344.

[41] Vandersypen, Lieven MK, et al. "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance." Nature 414.6866 (2001): 883.

[42] Ryan, C. A., Martin Laforest, and Raymond Laflamme. "Randomized benchmarking of single-and multi-qubit control in liquid-state NMR quantum information processing." New Journal of Physics 11.1 (2009): 013034.

[43] Stern, Ady, and Netanel H. Lindner. "Topological quantum computation—from basic concepts to first experiments." Science 339.6124 (2013): 1179-1184.

[44]Mourik, Vincent, et al. "Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices." Science 336.6084 (2012): 1003-1007.

[45] Zhang, Hao, et al. "Quantized majorana conductance." Nature 556.7699 (2018): 74.

[46] Gazibegovic, Sasa, et al. "Epitaxy of advanced nanowire quantum devices." Nature 548.7668 (2017): 434.

[47] Vaitiekėnas, S., et al. "Selective area grown semiconductor-superconductor hybrids: a basis for topological networks." arXiv preprint arXiv:1802.04210 (2018).

[48]He, Qing Lin, et al. "Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure." Science 357.6348 (2017): 294-299.

[49] 孔伟成. 基于transmon qubit的量子芯片工作环境的研究与优化[D].中国科学技术大学,2018.

[50] Ball, Harrison, William D. Oliver, and Michael J. Biercuk. "The role of master clock stability in quantum information processing." npj Quantum Information 2.1 (2016): 1-8.

[51] Hornibrook, J. M., et al. "Cryogenic control architecture for large-scale quantum computing." Physical Review Applied 3.2 (2015): 024010.

[52] Cederbaum, L. S., J. Zobeley, and F. Tarantelli. "Giant intermolecular decay and fragmentation of clusters." Physical review letters 79.24 (1997): 4778.

[53] Jahnke, T. "Interatomic and intermolecular Coulombic decay: the coming of age story." Journal of Physics B: Atomic, Molecular and Optical Physics 48.8 (2015): 082001.

[54] Tsigelny, Igor F., et al. "Dynamics of α‐synuclein aggregation and inhibition of pore‐like oligomer development by β‐synuclein." The FEBS journal 274.7 (2007): 1862-1877.

[55] Peruzzo, A. "A variational eigenvalue solver on a quantum processor. eprint." arXiv preprint arXiv:1304.3061 (2013).

[56] 同济大学数学系.高等数学-上册(第六版)[M].高等教育出版社,2007年4月.

[57] James Stewart. Calculus(Eight Edition)[M]. CENGAGE Learning, 2016.

[58] 丘维声. 高等代数-上册 [M].清华大学出版社,2010年6月.

[59] 同济大学数学系.高等数学-下册(第六版)[M].高等教育出版社,2007年6月.

[60] 丘维声. 高等代数-下册 [M].清华大学出版社,2010年10月.

[61] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information[M]. Cambridge University Press, 2010.

[62] Giuliano Benenti, Giulio Casati and Giuliano Strini. Principles of Quantum Computation and Information(Volume I: Basic Concepts)[M]. World Scientific, 2004.

[63] Mikio Nakahara and Tetsuo Ohmi . Quantum Computing-From Linear Algebra to Physical Realizations[M]. CRC Press, 2004.