forked from Chenyang-Lu/mono-semantic-occupancy
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvae_test.py
51 lines (42 loc) · 1.67 KB
/
vae_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import time
import os
import copy
import glob
from data_loader import *
from vae_nets import *
from util import vis_with_FOVmsk
root_dir = 'dataset/Cityscapes'
map_list = sorted(glob.glob(os.path.join(root_dir, 'Semantic_Occupancy_Grid_Multi_64', 'val', '*', '*occ_map.png')))
checkpoint_path = 'checkpoints/vae_checkpoint.pth.tar'
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# Define dataloaders
test_set = OccMapDataset('dataset/Cityscapes/CS_test_64.csv', transform=transforms.Compose([Rescale((256, 512)), ToTensor()]))
test_loader = DataLoader(test_set, batch_size=1, shuffle=False, num_workers=0)
model = vae_mapping()
model = model.to(device)
if os.path.isfile(checkpoint_path):
state = torch.load(checkpoint_path)
model.load_state_dict(state['state_dict'])
print('trained model loaded...')
else:
print('cannot load trained model...')
exit()
model.eval() # Set model to evaluate mode
# Iterate over data.
for i, temp_batch in enumerate(test_loader):
print('example no. ', i)
temp_rgb = temp_batch['rgb'].float().to(device)
# forward
# track history if only in train
with torch.set_grad_enabled(False):
pred_map, mu, logvar = model(temp_rgb, False)
map_to_save = np.reshape(np.argmax(pred_map.cpu().numpy().transpose((0, 2, 3, 1)), axis=3), [64, 64]).astype(np.uint8)
io.imsave(map_list[i][:-4] + '_nn_pred.png', map_to_save)
io.imsave(map_list[i][:-4] + '_nn_pred_c.png', vis_with_FOVmsk(map_to_save))