-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmul.c
382 lines (344 loc) · 11 KB
/
mul.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/* Copyright (c) 2024, Hubert Kario, Red Hat
* Released under BSD 2-Clause License, see LICENSE for details
*/
#include <stdint.h>
#include <stddef.h>
#include <sys/types.h>
#include <string.h>
/* For multiplication we're using schoolbook multiplication,
* so if we have two numbers, each with 6 "digits" (words)
* the multiplication is calculated as follows:
* A B C D E F
* x I J K L M N
* --------------
* N*F
* N*E
* N*D
* N*C
* N*B
* N*A
* M*F
* M*E
* M*D
* M*C
* M*B
* M*A
* L*F
* L*E
* L*D
* L*C
* L*B
* L*A
* K*F
* K*E
* K*D
* K*C
* K*B
* K*A
* J*F
* J*E
* J*D
* J*C
* J*B
* J*A
* I*F
* I*E
* I*D
* I*C
* I*B
* + I*A
* ==========================
* N*B N*D N*F
* + N*A N*C N*E
* + M*B M*D M*F
* + M*A M*C M*E
* + L*B L*D L*F
* + L*A L*C L*E
* + K*B K*D K*F
* + K*A K*C K*E
* + J*B J*D J*F
* + J*A J*C J*E
* + I*B I*D I*F
* + I*A I*C I*E
*
* 1+1 1+3 1+5
* 1+0 1+2 1+4
* 0+1 0+3 0+5
* 0+0 0+2 0+4
*
* 0 1 2 3 4 5 6
* which requires n^2 multiplications and 2n full length additions
* as we can keep every other result of limb multiplication in two separate
* limbs
*/
typedef uint64_t limb_t;
#define LIMB_BIT_SIZE 64
#define LIMB_BYTE_SIZE 8
#if 1
void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b) {
unsigned __int128 t;
/* this is idiomatic code to tell compiler to use the native mul
* those three lines will actually compile to single instruction */
t = (unsigned __int128)a * b;
*hi = t >> LIMB_BIT_SIZE;
*lo = t & -1UL;
}
#elif 0
/* if we're on a 32 bit platform */
void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b) {
uint64_t t;
/* this is idiomatic code to tell compiler to use the native mul
* those three lines will actually compile to single instruction */
t = (uint64_t)a * b;
*hi = t >> LIMB_BIT_SIZE;
*lo = t & -1UL;
}
#else
/*
* if the compiler doesn't have either a 128bit data type nor a "return
* high 64 bits of multiplication"
*/
void _mul_limb(limb_t *hi, limb_t *lo, limb_t a, limb_t b) {
limb_t a_low = (limb_t)(uint32_t)a;
limb_t a_hi = a >> 32;
limb_t b_low = (limb_t)(uint32_t)b;
limb_t b_hi = b >> 32;
limb_t p0 = a_low * b_low;
limb_t p1 = a_low * b_hi;
limb_t p2 = a_hi * b_low;
limb_t p3 = a_hi * b_hi;
uint32_t cy = (uint32_t)(((p0 >> 32) + (uint32_t)p1 + (uint32_t)p2) >> 32);
*lo = p0 + (p1 << 32) + (p2 << 32);
*hi = p3 + (p1 >> 32) + (p2 >> 32) + cy;
}
#endif
/* add two limbs with carry in, return carry out */
limb_t _add_limb(limb_t *ret, limb_t a, limb_t b, limb_t carry) {
limb_t carry1, carry2, t;
/* `c = a + b; if (c < a)` is idiomatic code that makes compilers
* use add with carry on assembly level */
*ret = a + carry;
if (*ret < a) {
carry1 = 1;
} else {
carry1 = 0;
}
t = *ret;
*ret = t + b;
if (*ret < t) {
carry2 = 1;
} else {
carry2 = 0;
}
return carry1 + carry2;
}
/* add two numbers of the same size, return overflow
*
* add a to b, place result in ret; all arrays need to be n limbs long
* return overflow from addition (0 or 1)
*/
limb_t add(limb_t *ret, limb_t *a, limb_t *b, size_t n) {
limb_t c = 0;
for(ssize_t i=n-1; i>-1; i--) {
c = _add_limb(&ret[i], a[i], b[i], c);
}
return c;
}
/* return number of limbs necessary for temporary values
* when multiplying numbers n limbs large
*/
size_t mul_limb_numb(size_t n) {
return 2*n*2;
}
/* multiply two numbers of the same size
*
* multiply a by b, place result in ret; a and b need to be n limbs long
* ret needs to be 2*n limbs long, tmp needs to be mul_limb_numb(n) limbs
* long
*/
void mul(limb_t *ret, limb_t *a, limb_t *b, size_t n, limb_t *tmp) {
limb_t *r_odd, *r_even;
r_odd = tmp;
r_even = &tmp[2*n];
for (size_t i=0; i<2*n; i++) {
ret[i] = 0;
}
for (size_t i=0; i<n; i++) {
for (size_t k=0; k<i+n+1; k++) {
r_even[k] = 0;
r_odd[k] = 0;
}
for (size_t j=0; j<n; j++) {
/* place results from even and odd limbs in separate arrays so that
* we don't have to calculate overflow every time we get individual
* limb multiplication result */
if (j % 2 == 0) {
_mul_limb(&r_even[i+j], &r_even[i+j+1], a[i], b[j]);
} else {
_mul_limb(&r_odd[i+j], &r_odd[i+j+1], a[i], b[j]);
}
}
/* skip the least significant limbs when adding multiples of
* more significant limbs (they're zero anyway) */
add(ret, ret, r_even, n+i+1);
add(ret, ret, r_odd, n+i+1);
}
}
/* modifies the value in place by performing a right shift by one bit */
void rshift1(limb_t *val, size_t n) {
limb_t shift_in=0, shift_out=0;
for (size_t i=0; i<n; i++) {
shift_out = val[i] & 1;
val[i] = shift_in << (LIMB_BIT_SIZE-1) | (val[i] >> 1);
shift_in = shift_out;
}
}
/* extend the LSB of flag to all bits of limb */
limb_t mk_mask(limb_t flag) {
flag |= flag << 1;
flag |= flag << 2;
flag |= flag << 4;
flag |= flag << 8;
flag |= flag << 16;
#if (LIMB_BYTE_SIZE == 8)
flag |= flag << 32;
#endif
return flag;
}
/* copy from either a or b to ret based on flag
* when flag == 0, then copies from b
* when flag == 1, then copies from a
*/
void cselect(limb_t flag, limb_t *ret, limb_t *a, limb_t *b, size_t n) {
/* would be more efficient with non volatile mask, but then gcc
* generates code with jumps */
volatile limb_t mask;
mask = mk_mask(flag);
for (size_t i=0; i<n; i++) {
ret[i] = (mask & a[i]) | (~mask & b[i]);
}
}
limb_t _sub_limb(limb_t *ret, limb_t a, limb_t b, limb_t borrow) {
limb_t borrow1, borrow2, t;
/* while it doesn't look constant-time, this is idiomatic code
* to tell compilers to use the carry bit from subtraction */
*ret = a - borrow;
if (*ret > a) {
borrow1 = 1;
} else {
borrow1 = 0;
}
t = *ret;
*ret = t - b;
if (*ret > t) {
borrow2 = 1;
} else {
borrow2 = 0;
}
return borrow1 + borrow2;
}
/* place the result of a - b into ret, return the borrow bit.
* All arrays need to be n limbs long
*/
limb_t sub(limb_t *ret, limb_t *a, limb_t *b, size_t n) {
limb_t borrow = 0;
for (ssize_t i=n-1; i>-1; i--) {
borrow = _sub_limb(&ret[i], a[i], b[i], borrow);
}
return borrow;
}
/* return the number of limbs necessary to allocate for the mod() tmp operand */
size_t mod_limb_numb(size_t anum, size_t modnum) {
return (anum + modnum) * 3;
}
/* calculate a % mod, place the result in ret
* size of a is defined by anum, size of ret and mod is modnum,
* size of tmp is returned by mod_limb_numb()
*/
void mod(limb_t *ret, limb_t *a, size_t anum, limb_t *mod, size_t modnum, limb_t *tmp) {
limb_t *atmp, *modtmp, *rettmp;
limb_t res;
memset(tmp, 0, mod_limb_numb(anum, modnum) * LIMB_BYTE_SIZE);
atmp = tmp;
modtmp = &tmp[anum+modnum];
rettmp = &tmp[(anum+modnum)*2];
for (size_t i=modnum; i<modnum+anum; i++) {
atmp[i] = a[i-modnum];
}
for (size_t i=0; i<modnum; i++) {
modtmp[i] = mod[i];
}
for (size_t i=0; i<anum*LIMB_BIT_SIZE; i++) {
rshift1(modtmp, anum+modnum);
res = sub(rettmp, atmp, modtmp, anum+modnum);
cselect(res, atmp, atmp, rettmp, anum+modnum);
}
memcpy(ret, &atmp[anum], sizeof(limb_t)*modnum);
}
/* necessary size of tmp for a _mul_add_limb() call with provided anum */
size_t _mul_add_limb_numb(size_t anum) {
return 2*(anum+1);
}
/* multiply a by m, add to ret, return carry
*/
limb_t _mul_add_limb(limb_t *ret, limb_t *a, size_t anum, limb_t m, limb_t *tmp) {
limb_t carry = 0;
limb_t *r_odd, *r_even;
memset(tmp, 0, sizeof(limb_t) * (anum+1)*2);
r_odd = tmp;
r_even = &tmp[anum+1];
for (size_t i=0; i<anum; i++) {
/* place the results from even and odd limbs in separate arrays
* so that we have to worry about carry just once */
if (i % 2 == 0) {
_mul_limb(&r_even[i], &r_even[i+1], a[i], m);
} else {
_mul_limb(&r_odd[i], &r_odd[i+1], a[i], m);
}
}
/* assert: add() carry here will be equal zero */
add(r_even, r_even, r_odd, anum+1);
/* while here it will not overflow as the max value from multiplication
* is -2 while max overflow from addition is 1, so the max value of
* carry is -1 (i.e. max int)
*/
carry = add(ret, ret, &r_even[1], anum) + r_even[0];
return carry;
}
size_t mod_montgomery_limb_numb(size_t modnum) {
return modnum * 2 + _mul_add_limb_numb(modnum);
}
/* calculate a % mod, place result in ret
* assumes that a is in mongomery form with the R (Mongomery modulus) being
* smallest power of two big enough to fit mod and that's also a power
* of the count of number of bits in limb_t (B).
* For calculation, we also need n', such that mod * n' == -1 mod B.
* anum must be <= 2*modnum
* ret needs to be modnum words long
* tmp needs to be mod_montgomery_limb_numb(modnum) limbs long
*/
void mod_montgomery(limb_t *ret, limb_t *a, size_t anum, limb_t *mod, size_t modnum, limb_t ni0, limb_t *tmp) {
limb_t carry, v;
limb_t *res, *rp, *tmp2;
res = tmp;
/* for intermediate result we need an integer twice as long as modulus
* but keep the input in the least significant limbs
*/
memset(res, 0, sizeof(limb_t) * (modnum*2));
memcpy(&res[modnum*2-anum], a, sizeof(limb_t) * anum);
rp = &res[modnum];
tmp2 = &res[modnum*2];
carry = 0;
/* add multiples of the modulus to the value until R divides it cleanly */
for (ssize_t i = modnum; i > 0; i--, rp--) {
v = _mul_add_limb(rp, mod, modnum, (rp[modnum-1]*ni0) & -1UL, tmp2);
v = (v + carry + rp[-1]) & -1UL;
carry |= (v != rp[-1]);
carry &= (v <= rp[-1]);
rp[-1] = v;
}
/* perform the final reduction by mod... */
carry -= sub(ret, rp, mod, modnum);
/* ...conditionally */
cselect(carry, ret, rp, ret, modnum);
}