-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathours2.py
405 lines (355 loc) · 17.8 KB
/
ours2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
import numpy as np
import json
import os
import sys
from datetime import datetime
import time
from collections import defaultdict
sys.path.append('/home/tvromen/research')
from Common.Utils import IdAssigner, print_flush
from Common.RatingsData import RatingsData, remove_extreme_users, constant_user_length
import tensorflow as tf
import matplotlib.pyplot as plt
from occf import calc_scores
class Flags(object):
def __init__(self):
# Model Hyperparameters
self.embedding_dim = 10
self.alpha = 0.1
self.reg_lambda = 0.000001
# Training parameters
self.training_stop_after = None
self.batch_size = 1024
self.num_epochs = 10
# self.num_epochs = 2000
self.summary_every = 100
self.evaluate_every = 1000
self.checkpoint_every = 2000
self.num_checkpoints = 3
# Misc Parameters
self.allow_soft_placement = True
self.log_device_placement = False
FLAGS = Flags()
np.random.seed(1234)
###########
# Dataset #
###########
if len(sys.argv) != 2:
print('Usage: python3 ours2.py <dataset_name>')
exit(1)
dataset_name = sys.argv[1]
ratings = RatingsData.from_files(dataset_name+'.train.txt', dataset_name+'.val.txt')
print_flush('Num users: {}'.format(ratings.num_users))
print_flush('Num items: {}'.format(ratings.num_items))
print_flush("Train/Val/Test split: {}/{}/{}".format(
len(ratings.train), len(ratings.val), len(ratings.test)
))
users_train = set(ratings.train['user_id'])
users_val = set(ratings.val['user_id'])
print_flush('# users in train set: {}'.format(len(users_train)))
print_flush('# users in val set: {}'.format(len(users_val)))
print_flush('# users in val set not in train set: {}'.format(len(users_val - users_train)))
#############
# The model #
#############
def get_dynamic_tensor_shape(x):
"""
Calculate the tensor shape. Use a plain number where possible and a tensor elsewhere.
x is a tensor of some shape.
returns a list with the dimensions of x.
"""
shape_tensor = tf.shape(x)
shape = list(x.get_shape())
for i in range(len(shape)):
shape[i] = shape[i].value
if shape[i] is None:
# use tensor to represent the dimension
shape[i] = shape_tensor[i]
return shape
def embedding_lookup_layer(x, vocab_size, embedding_dim, variable_scope, reuse=False, zero_init=False):
"""
Lookup embedding
x is tensor of shape (d_1, d_2, ..., d_n) and type int32
result is tensor of shape (d_1, d_2, ..., d_n, embedding_dim) of n+1 dimensions and type DT_FLOAT
"""
initializer = tf.contrib.layers.xavier_initializer() if not zero_init else tf.zeros_initializer()
with tf.variable_scope(variable_scope, reuse=reuse):
W = tf.get_variable(
'W',
shape=[vocab_size, embedding_dim],
initializer=initializer,
regularizer=tf.contrib.layers.l2_regularizer(1.)
)
x_embedded = tf.nn.embedding_lookup(W, x)
return x_embedded
def bias_lookup_layer(x, vocab_size, variable_scope, reuse=False):
"""
Lookup bias
x is tensor of shape (d_1, d_2, ..., d_n) and type int32
result is tensor of same shape as x and type DT_FLOAD
"""
with tf.variable_scope(variable_scope, reuse=reuse):
b = tf.get_variable(
'b',
shape=[vocab_size, 1],
initializer=tf.zeros_initializer() # ,
# TODO: does bias need regularization?
# regularizer=tf.contrib.layers.l2_regularizer(1.)
)
x_bias = tf.squeeze(tf.nn.embedding_lookup(b, x), -1)
return x_bias
def fc_layer(x, output_size, variable_scope, reuse=False):
"""
Fully-connected layer
x has shape (batch_size, d_2)
result has shape (batch_size, output_size)
"""
shape = get_dynamic_tensor_shape(x)
assert len(shape) == 2
## TODO: regularization
with tf.variable_scope(variable_scope, reuse=reuse):
W = tf.get_variable(
"W",
shape=[shape[1], output_size],
initializer=tf.contrib.layers.xavier_initializer())
b = tf.get_variable(
"b",
shape=[output_size],
initializer=tf.contrib.layers.xavier_initializer())
result = tf.nn.xw_plus_b(x, W, b, name="fc")
return result
class PredictionModel(object):
"""
A neural network for predicting per-user item ratings.
The input to the network is the user_id and item_id.
"""
def __init__(self, num_users, num_items, num_ratings, embedding_dim, mu, alpha, reg_lambda):
assert num_users >= 1
self.num_users = num_users
assert num_items >= 1
self.num_items = num_items
assert num_ratings >= 1
self.num_ratings = num_ratings
assert embedding_dim >= 1
self.embedding_dim = embedding_dim
assert reg_lambda >= 0
# Placeholders for input, output and dropout
self.input_user_ids = tf.placeholder(tf.int32, [None], name="input_user_ids")
self.input_per_user_count = tf.placeholder(tf.int32, [None], name="input_per_user_count")
self.input_per_user_item_ids = tf.placeholder(tf.int32, [None, None], name="input_per_user_item_ids")
self.input_per_user_ratings = tf.placeholder(tf.float32, [None, None], name="input_per_user_ratings")
self.input_per_user_neg_ids = tf.placeholder(tf.int32, [None, None], name="input_per_user_neg_ids")
num_users = tf.shape(self.input_user_ids)[0]
batch_size = tf.reduce_sum(self.input_per_user_count)
asrt1 = tf.assert_equal(num_users, tf.shape(self.input_per_user_count)[0])
asrt2 = tf.assert_equal(num_users, tf.shape(self.input_per_user_item_ids)[0])
asrt3 = tf.assert_equal(num_users, tf.shape(self.input_per_user_ratings)[0])
asrt4 = tf.assert_equal(num_users, tf.shape(self.input_per_user_neg_ids)[0])
# pu = per_user
pu_mask = tf.sequence_mask(self.input_per_user_count, dtype=tf.float32)
# embedding lookup layer
with tf.device('/cpu:0'), tf.name_scope('embedding_lookup'), tf.control_dependencies([asrt1, asrt2, asrt3, asrt4]):
# get dimension of user_ids to match the per_user_* stuff
user_em = embedding_lookup_layer(self.input_user_ids, self.num_users, self.embedding_dim, 'user_embedding')
user_bias = bias_lookup_layer(self.input_user_ids, self.num_users, 'user_embedding')
expanded_user_em = tf.expand_dims(user_em, 1)
expanded_user_bias = tf.expand_dims(user_bias, 1)
pu_item_em = embedding_lookup_layer(self.input_per_user_item_ids, self.num_items, self.embedding_dim, 'item_embedding')
pu_neg_em = embedding_lookup_layer(self.input_per_user_neg_ids, self.num_items, self.embedding_dim, 'item_embedding', reuse=True)
pu_item_bias = bias_lookup_layer(self.input_per_user_item_ids, self.num_items, 'item_embedding')
pu_neg_bias = bias_lookup_layer(self.input_per_user_neg_ids, self.num_items, 'item_embedding', reuse=True)
with tf.name_scope('bpr'):
pu_em_delta = pu_item_em - pu_neg_em
pu_bias_delta = pu_item_bias - pu_neg_bias
pu_prediction_delta = tf.reduce_sum(expanded_user_em * pu_em_delta, axis=-1) + pu_bias_delta
# self.bpr_loss = pu_mask * tf.log(tf.sigmoid(-pu_prediction_delta) + 0.01)
self.bpr_loss = pu_mask * tf.sigmoid(-pu_prediction_delta)
# PMF (a.k.a. "SVD for recommender systems) part
with tf.name_scope('rating'):
user_rating_em = tf.tanh(fc_layer(user_em, self.embedding_dim, 'ranking_to_rating'))
expanded_user_rating_em = tf.expand_dims(user_rating_em, 1)
shape = get_dynamic_tensor_shape(pu_item_em)
all_item_em = tf.reshape(pu_item_em, (shape[0]*shape[1], shape[2]))
all_item_rating_em = tf.tanh(fc_layer(all_item_em, self.embedding_dim, 'ranking_to_rating', reuse=True))
pu_item_rating_em0 = tf.reshape(all_item_rating_em, (shape[0], shape[1], self.embedding_dim))
pu_item_rating_em1 = embedding_lookup_layer(self.input_per_user_item_ids, self.num_items, self.embedding_dim, 'item_rating_embedding', zero_init=True)
pu_item_rating_em = pu_item_rating_em0 + pu_item_rating_em1
pu_item_rating_bias = bias_lookup_layer(self.input_per_user_item_ids, self.num_items, 'item_rating_embedding')
self.rating_prediction = tf.reduce_sum(expanded_user_rating_em * pu_item_rating_em, axis=-1) + mu + expanded_user_bias + pu_item_rating_bias
self.rating_loss = tf.square(self.input_per_user_ratings - self.rating_prediction)
# regularization
with tf.name_scope('regularization'):
self.reg_loss = (reg_lambda) / 2 * sum(tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES))
# loss
with tf.name_scope('loss'):
self.loss = ((1-alpha)*tf.reduce_mean(self.bpr_loss)) + (alpha*tf.reduce_mean(self.rating_loss)) + self.reg_loss
def get_embedding_mats(self):
with tf.device('/cpu:0'), tf.name_scope('embedding_lookup'):
user_ids = np.arange(self.num_users)
item_ids = np.arange(self.num_items)
U = embedding_lookup_layer(user_ids, self.num_users, self.embedding_dim, 'user_embedding', reuse=True)
V = embedding_lookup_layer(item_ids, self.num_items, self.embedding_dim, 'item_embedding', reuse=True)
Vb = bias_lookup_layer(item_ids, self.num_items, 'item_embedding', reuse=True)
return (U, V, Vb)
# Training
# ==================================================
def train(
model, sess, starter_learning_rate, learning_rate_decay_every, learning_rate_decay_by, stop_after
):
# Define Training procedure
global_step = tf.Variable(0, name="global_step", trainable=False)
#optimizer = tf.train.AdamOptimizer(1e-3)
learning_rate = tf.train.exponential_decay(
starter_learning_rate, global_step, learning_rate_decay_every,
learning_rate_decay_by, staircase=True)
# optimizer = tf.train.AdamOptimizer(learning_rate)
optimizer = tf.train.AdagradOptimizer(learning_rate)
grads_and_vars = optimizer.compute_gradients(model.loss)
train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)
# Keep track of gradient values and sparsity (optional)
grad_summaries = []
#for g, v in grads_and_vars:
for g,v in []:
if g is not None:
grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
grad_summaries.append(grad_hist_summary)
grad_summaries.append(sparsity_summary)
#grad_summaries_merged = tf.summary.merge(grad_summaries)
# Output directory for models and summaries
timestamp = str(int(time.time()))
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
print_flush("Writing to {}\n".format(out_dir))
# Summaries for loss
loss_summary = tf.summary.scalar("loss", model.loss)
learning_rate_summary = tf.summary.scalar("learning_rate", learning_rate)
# Train Summaries
train_summary_op = tf.summary.merge([loss_summary, learning_rate_summary])#, grad_summaries_merged])
train_summary_dir = os.path.join(out_dir, "summaries", "train")
train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)
# Val summaries
val_summary_op = tf.summary.merge([loss_summary, learning_rate_summary])
val_summary_dir = os.path.join(out_dir, "summaries", "val")
val_summary_writer = tf.summary.FileWriter(val_summary_dir, sess.graph)
# Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
checkpoint_prefix = os.path.join(checkpoint_dir, "model")
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)
# Initialize all variables
sess.run(tf.global_variables_initializer())
def train_step(user_ids, per_user_count, per_user_item_ids, per_user_ratings):
"""
A single training step
"""
per_user_neg_ids = ratings.get_batch_neg(user_ids, per_user_item_ids.shape[1])
feed_dict = {
model.input_user_ids: user_ids,
model.input_per_user_count: per_user_count,
model.input_per_user_item_ids: per_user_item_ids,
model.input_per_user_neg_ids: per_user_neg_ids,
model.input_per_user_ratings: per_user_ratings,
}
sess.run(train_op, feed_dict)
step, loss, rate = sess.run(
[global_step, model.loss, learning_rate],
feed_dict)
if step % FLAGS.summary_every == 0:
summaries = sess.run(train_summary_op, feed_dict)
train_summary_writer.add_summary(summaries, step)
time_str = datetime.now().isoformat()
if step % FLAGS.summary_every == 0:
print_flush("{}: step {}, loss {:g}, rate {:g}".format(
time_str, step, loss, rate)
)
return loss
def val_step(user_ids, per_user_count, per_user_item_ids, per_user_ratings, writer=None):
"""
Evaluates model on a val set
"""
per_user_neg_ids = ratings.get_batch_neg(user_ids, per_user_item_ids.shape[1])
feed_dict = {
model.input_user_ids: user_ids,
model.input_per_user_count: per_user_count,
model.input_per_user_item_ids: per_user_item_ids,
model.input_per_user_neg_ids: per_user_neg_ids,
model.input_per_user_ratings: per_user_ratings,
}
step, summaries, loss = sess.run(
[global_step, val_summary_op, model.loss],
feed_dict)
time_str = datetime.now().isoformat()
print_flush("{}: step {}, loss {:g}".format(
time_str, step, loss))
if writer:
writer.add_summary(summaries, step)
return loss
# Generate batches
batches = ratings.train_batch_iter(FLAGS.batch_size, FLAGS.num_epochs)
last_val_loss = 0
# Training loop. For each batch...
for (user_ids, per_user_count, per_user_item_ids, per_user_ratings) in batches:
last_train_loss = train_step(user_ids, per_user_count, per_user_item_ids, per_user_ratings)
current_step = tf.train.global_step(sess, global_step)
if stop_after and current_step > stop_after:
print_flush('Stopping after {} training steps'.format(stop_after))
break
if current_step % FLAGS.evaluate_every == 0:
print_flush("\nEvaluation:")
(val_user_ids, val_per_user_count, val_per_user_item_ids, val_per_user_ratings) = ratings.get_batch(ratings.val[:FLAGS.batch_size])
last_val_loss = val_step(val_user_ids, val_per_user_count, val_per_user_item_ids, val_per_user_ratings, writer=val_summary_writer)
U, V, Vb = sess.run(model.get_embedding_mats())
numtest = 1000
testids = np.random.permutation(list(set(ratings.val['user_id'])))[:numtest]
predictions = np.matmul(U[testids], np.transpose(V)) + np.transpose(Vb)
ndcg,mrr,precision = calc_scores.calc_scores(ratings.val, testids, predictions, 10)
print_flush(' Scores for val set: NDCG@10={:.4f}, MRR@10={:.4f}, P@10={:.4f}'.format(ndcg, mrr, precision))
print_flush("")
if current_step % FLAGS.checkpoint_every == 0:
path = saver.save(sess, checkpoint_prefix, global_step=current_step)
print_flush("Saved model checkpoint to {}\n".format(path))
pass
return (last_train_loss, last_val_loss)
def runall():
res = defaultdict(list)
with open('results.txt', 'a') as f:
with tf.Graph().as_default():
session_conf = tf.ConfigProto(
allow_soft_placement=FLAGS.allow_soft_placement,
log_device_placement=FLAGS.log_device_placement)
session_conf.gpu_options.allow_growth=True
sess = tf.Session(config=session_conf)
with sess.as_default():
model = PredictionModel(
num_users=ratings.num_users,
num_items=ratings.num_items,
num_ratings=len(ratings.train),
embedding_dim=FLAGS.embedding_dim,
mu=np.mean(ratings.train['rating']),
alpha=FLAGS.alpha,
reg_lambda=FLAGS.reg_lambda,
)
for i in range(1):
last_loss = train(model, sess, 1e0, 40000, 0.5, FLAGS.training_stop_after)
f.write('loss: {}\n'.format(last_loss))
f.flush()
res['loss'].append(last_loss)
U, V, Vb = sess.run(model.get_embedding_mats())
np.savetxt('results-'+dataset_name+'/ours2.u.txt', U, delimiter=',')
np.savetxt('results-'+dataset_name+'/ours2.v.txt', V, delimiter=',')
np.savetxt('results-'+dataset_name+'/ours2.vb.txt', Vb, delimiter=',')
numtest = 1000
testids = np.random.permutation(list(set(ratings.val['user_id'])))[:numtest]
predictions = np.matmul(U[testids], np.transpose(V)) + np.transpose(Vb)
ndcg,mrr,precision = calc_scores.calc_scores(ratings.val, testids, predictions, 10)
f.write(repr((ndcg,mrr,precision)) + '\n')
f.write('\n')
f.flush()
res['ndcg_at_10'].append(ndcg)
res['mrr_at_10'].append(mrr)
res['precision_at_10'].append(precision)
print_flush(res)
return res
res = runall()
print_flush(res)