forked from nuletizia/CORTICAL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCORTICAL.py
412 lines (311 loc) · 16.9 KB
/
CORTICAL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
from __future__ import print_function, division
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from keras.layers import BatchNormalization, Input, Dense, GaussianNoise, Concatenate, Lambda, regularizers
from keras.models import Sequential, Model
from tensorflow.keras.optimizers import Adam
from tensorflow.python.keras import backend as K
import numpy as np
import scipy.io as sio
import argparse
from numpy.random import seed
from uniform_noise import UniformNoise
from cauchy_noise import CauchyNoise
from exponential_noise import ExponentialNoise
# loss functions and regularizations
def wasserstein_loss(y_true, y_pred):
return K.mean(y_true* y_pred)
def my_binary_crossentropy(y_true, y_pred):
return -K.mean(K.log(y_true)+K.log(y_pred))
def my_peak_power(y_true, y_pred):
# P = A^2
return K.maximum(K.sum(y_pred*y_pred,axis=-1,keepdims=True)-1,0)
def my_peak_power_ellipse(y_true, y_pred):
# P = x^2+R*y^2
R = 3
return K.maximum(y_pred[:,0]*y_pred[:,0]+R*y_pred[:,1]*y_pred[:,1]-1,0)
def my_average_power(y_true, y_pred):
return K.maximum(K.mean(K.sum(y_pred*y_pred,axis=-1,keepdims=True))-1,0)
def my_log_power(y_true, y_pred):
A = 2
gamma = 1
return K.maximum(K.mean(K.sum(K.log(((A+gamma)/A)**2+((1/A)**2)*y_pred*y_pred),axis=-1,keepdims=True))-np.log(4),0)
def my_reciprocal_power(y_true, y_pred):
return K.maximum(K.mean(K.pow(y_pred,-1)-1)-1,0)
def get_lr_metric(optimizer):
# to print out the learning rate
def lr(y_true, y_pred):
return optimizer._decayed_lr(tf.float32)
return lr
def Rayleigh_Channel(x):
# Rayleigh in tensor
ch_coeff = K.sqrt(K.square(K.random_normal((1,),0,0.5))+K.square(K.random_normal((1,),0,0.5)))
y = ch_coeff*x
theta = K.random_uniform((1,),-np.pi/2,np.pi/2)
real_0 = K.cos(theta) * y[:,0] - K.sin(theta)* y[:,1]
imag_0 = K.cos(theta) * y[:,1] + K.sin(theta)* y[:,0]
z = K.stack([real_0, imag_0], axis=1)
return z
def Rayleigh(x, p):
# Rayleigh in numpy
ch_coeff = np.sqrt(np.add(np.square(np.random.normal(0,0.5, p)),np.square(np.random.normal(0,0.5, p))))
y = np.multiply(np.tile(ch_coeff,2).reshape((p,2)),x)
theta = np.random.uniform(-np.pi/2,np.pi/2, p)
real_0 = np.cos(theta) * y[:,0] - np.sin(theta)* y[:,1]
imag_0 = np.cos(theta) * y[:,1] + np.sin(theta)* y[:,0]
z = np.stack([real_0, imag_0], axis=1)
return z
def shuffleColumns(x):
# Joint and marginal architectures
return tf.gather(x, tf.random.shuffle(tf.range(tf.shape(x)[0])))
def data_generation_mi(data_x, data_y):
# Create paired and unpaired samples
data_xy = np.hstack((data_x, data_y))
data_y_shuffle = np.take(data_y, np.random.permutation(data_y.shape[0]), axis=0)
data_x_y = np.hstack((data_x, data_y_shuffle))
return data_xy, data_x_y
class CORTICAL():
def __init__(self, latent_dim, data_dim, alpha, channel, EbN0, power_constraint):
# Input shape of z
self.latent_dim = latent_dim
# Shape of channel input x
self.data_dim = data_dim
# Joint architecture shape
self.joint_dim = 2 * self.data_dim
self.alpha = alpha
self.channel = channel
# Regularization coefficients
self.power_constraint = power_constraint
self.reg_PP = 1 if self.power_constraint=='PP' or self.power_constraint=='PPAP' else 0
self.reg_AP = 1 if self.power_constraint=='AP' or self.power_constraint=='PPAP' else 0
self.eps = np.sqrt(pow(10, -0.1 * EbN0) / (2 * 0.5))
# Noise power
N = self.eps**2
optimizer_G = Adam(0.0002, 0.5)
lr_metric = get_lr_metric(optimizer_G)
optimizer_D = Adam(0.002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
# Build the generators
self.generator = self.build_generator()
# The transmitter encodes the bits in s
s_in = layers.Input(shape=(self.latent_dim,))
x_n = self.generator(s_in)
self.encoder = tf.keras.Model(s_in, x_n)
if channel == 'AWGN' or 'MIMO':
ch = layers.Lambda(lambda x: x)(x_n)
y = layers.GaussianNoise(np.sqrt(N))(ch) # AWGN layer
elif channel == 'UNIF':
ch = layers.Lambda(lambda x: x)(x_n)
delta = np.sqrt(12*N) # variance of the uniform
y = UniformNoise(-delta/2,delta/2)(ch) # Uniform noise layer
elif channel == 'AICN':
ch = layers.Lambda(lambda x: x)(x_n)
y = CauchyNoise(-np.pi/2,np.pi/2)(ch) # Cauchy noise layer
elif channel == 'RAY':
print('Building the Rayleigh tensor channel')
print('Regularization terms for peak and average power are %d and %d' %(self.reg_PP, self.reg_AP))
ch = layers.Lambda(lambda x: Rayleigh_Channel(x))(x_n) # Fading
y = layers.GaussianNoise(np.sqrt(N))(ch) # AWGN layer
elif channel == 'EXP':
print('Building the exponential channel for the rayleigh amplitude')
print('Regularization terms for peak and average power are %d and %d' %(self.reg_PP, self.reg_AP))
#ch = layers.Lambda(lambda x: x**2+1)(x_n) # Amplification to x^2+1, old method
ch = layers.Lambda(lambda x: K.pow(x,-1))(x_n) # use sigmoid output, x_n is s
y = ExponentialNoise(0,1)(ch) # Exponential layer
else:
print('Noise type is not defined, using AWGN')
ch = layers.Lambda(lambda x: x)(x_n)
y = layers.GaussianNoise(np.sqrt(N))(ch) # AWGN layer
xy = layers.Concatenate(name='network/concatenate_layer_1')([x_n, y])
y_bar_input = layers.Lambda(lambda x: shuffleColumns(x))(y) # shuffle y input as y_bar
x_y = layers.Concatenate(name='network/concatenate_layer_2')([x_n, y_bar_input])
# The discriminator takes as input joint or marginal vectors
d_xy = self.discriminator(xy)
d_x_y = self.discriminator(x_y)
xy_in = layers.Input(shape=(self.joint_dim,))
x_y_in = layers.Input(shape=(self.joint_dim,))
d_xy_in = self.discriminator(xy_in)
d_x_y_in = self.discriminator(x_y_in)
# The combined model (stacked generator and discriminator)
# Trains the generator to help the discriminator
self.combined_d = tf.keras.Model([xy_in,x_y_in], [d_xy_in,d_x_y_in])
self.combined_d.compile(loss=[my_binary_crossentropy,wasserstein_loss],loss_weights=[self.alpha,1], optimizer=optimizer_D)
# Update only the generator
self.discriminator.trainable = False
self.combined_g = tf.keras.Model(s_in, [d_xy, d_x_y, x_n, x_n])
# for the Cauchy channel consider a different power constraint
if self.channel == 'AICN':
print('Creating generator with AICN constraints..')
self.combined_g.compile(loss=[my_binary_crossentropy, wasserstein_loss, my_log_power, my_average_power], loss_weights=[self.alpha, 1, 1, 0],
optimizer=optimizer_G, metrics=[lr_metric])
elif self.channel == 'EXP':
print('Creating generator with EXP constraints..')
self.combined_g.compile(loss=[my_binary_crossentropy, wasserstein_loss, my_reciprocal_power, my_average_power], loss_weights=[self.alpha, 1, 0.03, 0],
optimizer=optimizer_G, metrics=[lr_metric])
elif self.channel == 'MIMO':
print('Creating generator with MIMO elliptical constraints..')
self.combined_g.compile(loss=[my_binary_crossentropy, wasserstein_loss, my_peak_power_ellipse, my_average_power], loss_weights=[self.alpha, 1, self.reg_PP, self.reg_AP],
optimizer=optimizer_G, metrics=[lr_metric])
else:
self.combined_g.compile(loss=[my_binary_crossentropy, wasserstein_loss, my_peak_power, my_average_power], loss_weights=[self.alpha, 1, self.reg_PP, self.reg_AP],
optimizer=optimizer_G, metrics=[lr_metric])
def build_generator(self):
model = tf.keras.models.Sequential()
model.add(layers.Dense(512, activation="relu", input_dim=self.latent_dim))
model.add(layers.Dense(512, activation="relu"))
model.add(layers.Dense(512, activation="relu"))
if self.channel == 'EXP':
# due to constraints, see Faycal2001
model.add(layers.Dense(self.data_dim, activation="sigmoid"))
else:
model.add(layers.Dense(self.data_dim))
model.summary()
T = layers.Input(shape=(self.latent_dim,))
D = model(T)
return tf.keras.Model(T, D)
def build_discriminator(self):
model = tf.keras.models.Sequential()
model.add(layers.Dense(100, input_dim=self.joint_dim))
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dense(100))
model.add(layers.LeakyReLU(alpha=0.2))
model.add(layers.Dense(1, activation='softplus'))
model.summary()
T = layers.Input(shape=(self.joint_dim,))
D = model(T)
return tf.keras.Model(T, D)
def train(self, epochs, batch_size=40):
# Adversarial ground truths
valid = np.ones((batch_size, 1))
epochs_D = 10
epochs_G = 1
MI_VAR = np.zeros((epochs,1))
# set piecewise constant decay learning rate for the generator
lr_g_values = [0.0002, 0.0002, 0.0002] # did not change it, for now
boundary_epochs = [10000,50000]
for epoch in range(epochs):
# Sample noise and train CORTICAL
# ---------------------
# Train Discriminator
# ---------------------
for epoch_D in range(epochs_D):
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
ch_input = self.encoder.predict(noise)
eps = self.eps
if self.channel == 'AWGN' or 'MIMO':
ch_output = ch_input + eps * np.random.normal(0, 1, (batch_size, self.data_dim))
elif self.channel == 'UNIF':
delta = np.sqrt(12)*eps
ch_output = ch_input + np.random.uniform(-delta/2, delta/2, (batch_size, self.data_dim))
elif self.channel == 'AICN':
# P = k - gamma, C = log(1+P/gamma) or log(A/gamma) where gamma<k<= A
gamma = 1
ch_output = ch_input + gamma*np.tan(0.99*np.random.uniform(-np.pi/2, np.pi/2, (batch_size, self.data_dim)))
elif self.channel == 'RAY':
ch_input_att = Rayleigh(ch_input, batch_size)
ch_output = ch_input_att + eps * np.random.normal(0, 1, (batch_size, self.data_dim))
elif self.channel == 'EXP':
# ch_input_amp = np.power(ch_input, 2)+1 old method
ch_input_amp = np.power(ch_input, -1)
ch_output = -(ch_input_amp * np.log(1-np.random.uniform(0, 1, (batch_size, self.data_dim))))
else:
# use AWGN
ch_output = ch_input + eps * np.random.normal(0, 1, (batch_size, self.data_dim))
# Shuffle to implement pi(), see CORTICAL paper
data_xy, data_x_y = data_generation_mi(ch_input, ch_output) # create paired and unpaired
d_loss = self.combined_d.train_on_batch([data_xy, data_x_y],[valid,valid])
# Print these values if desired
D_value_xy = self.discriminator.predict(data_xy)
D_value_x_y = self.discriminator.predict(data_x_y)
J_e = self.alpha * np.log(D_value_xy) - D_value_x_y
# Extract an estimate of the variational lower bound on the MI
MI_VAR[epoch] = np.mean(J_e / self.alpha + 1 - np.log(self.alpha))
# ---------------------
# Train Generator
# ---------------------
# check learning rates
if any(epoch == c for c in boundary_epochs):
print(boundary_epochs.index(epoch))
K.set_value(self.combined_g.optimizer.learning_rate, lr_g_values[boundary_epochs.index(epoch)+1])
for epoch_G in range(epochs_G):
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
g_loss = self.combined_g.train_on_batch(noise, [valid, valid, valid, valid])
# Plot the progress
print("Current MI estimate is %f" % (MI_VAR[epoch]))
print("CORTICAL training loss, epoch: %d [D1 loss: %f] [D2 loss: %f] [G1 loss: %f] [G2 loss: %f] [G3 loss: %f]" % (epoch, d_loss[1],d_loss[2], g_loss[1], g_loss[2], g_loss[3]))
if epoch%1000 == 0:
noise_test = np.random.normal(0, 1, (10000, self.latent_dim))
partial_ch_input = self.encoder.predict(noise_test)
sio.savemat('data_CORTICAL_%d.mat'%epoch,{'ch_input': partial_ch_input})
if epoch==epochs-1:
# save the evolution of the MI over training
sio.savemat('data_CORTICAL_%d.mat'%epoch,{'ch_input': partial_ch_input, 'MI_VAR_training': MI_VAR})
def test(self, test_size=1000):
# test now..
noise = np.random.normal(0,1, (test_size, self.latent_dim))
# Get channel input data
ch_input = self.encoder.predict(noise)
eps = self.eps
if self.channel == 'AWGN' or 'MIMO':
ch_output = ch_input + eps * np.random.normal(0, 1, (test_size, self.data_dim))
elif self.channel == 'UNIF':
delta = np.sqrt(12)*eps
ch_output = ch_input + np.random.uniform(-delta/2, delta/2, (test_size, self.data_dim))
elif self.channel == 'AICN':
gamma = 1
ch_output = ch_input + gamma*np.tan(0.99*np.random.uniform(-np.pi/2, np.pi/2, (test_size, self.data_dim)))
elif self.channel == 'RAY':
ch_input_att = Rayleigh(ch_input, test_size)
ch_output = ch_input_att + eps * np.random.normal(0, 1, (test_size, self.data_dim))
elif self.channel == 'EXP':
# ch_input_amp = np.power(ch_input, 2)+1
ch_input_amp = np.power(ch_input, -1)
ch_output = -(ch_input_amp * np.log(1-np.random.uniform(0, 1, (test_size, self.data_dim))))
else:
ch_output = ch_input + eps * np.random.normal(0, 1, (test_size, self.data_dim))
# Shuffle to implement pi(), see CORTICAL paper
data_xy, data_x_y = data_generation_mi(ch_input, ch_output)
# for the variational lower bound, you need to average over the joint samples and the marginals
D_value_1 = self.discriminator.predict(data_xy)
D_value_2 = self.discriminator.predict(data_x_y)
J_e = self.alpha * np.log(D_value_1) - D_value_2
MI_VAR = J_e / self.alpha + 1 - np.log(self.alpha)
# Return also the constellation
return MI_VAR, ch_input, ch_output
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', help='Number of channel samples to train on at once', default=32)
parser.add_argument('--epochs', help='Number of epochs to train for', default=100001)
parser.add_argument('--test_size', help='Number of data samples for testing', default=10000)
parser.add_argument('--dim', help='Channel input dimension', default=1)
parser.add_argument('--alpha', help='Alpha parameter of CORTICAL', default=1)
parser.add_argument('--channel', help='Type of channel: AWGN, UNIF, AICN, EXP, RAY, MIMO', default='AWGN')
parser.add_argument('--power_constraint', help='Type of constraint: PP (peak power), AP (amplitude power), PPAP', default='PP')
args = parser.parse_args()
test_size = int(args.test_size)
data_dim = int(args.dim)
alpha = float(args.alpha)
channel = str(args.channel)
power_constraint = str(args.power_constraint)
EbN0_dB = range(-14, 29) # SNR range
latent_dim = 30 # z input dimension
MI_VAR_total = np.zeros((len(EbN0_dB),test_size))
features_x = []
features_y = []
j = 0
for EbN0 in EbN0_dB:
print("Current EbN0 is: %f" %EbN0)
# Initialize CORTICAL
cortical = CORTICAL(latent_dim, data_dim, alpha, channel, EbN0, power_constraint)
# Train
cortical.train(epochs=int(args.epochs), batch_size=int(args.batch_size))
# Test
MI_VAR, data_x, data_y = cortical.test(test_size)
MI_VAR_total[j, :] = np.transpose(MI_VAR)
features_x.append(data_x)
features_y.append(data_y)
del cortical
j = j + 1
sio.savemat('data_CORTICAL.mat', {'MI_VAR': MI_VAR_total, 'ch_input': features_x, 'ch_output':features_y})