-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathlong_seq.py
79 lines (76 loc) · 3.69 KB
/
long_seq.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import torch
import torch.nn.functional as F
import numpy as np
def process_long_input(model, input_ids, attention_mask, start_tokens, end_tokens):
# Split the input to 2 overlapping chunks. Now BERT can encode inputs of which the length are up to 1024.
n, c = input_ids.size()
start_tokens = torch.tensor(start_tokens).to(input_ids)
end_tokens = torch.tensor(end_tokens).to(input_ids)
len_start = start_tokens.size(0)
len_end = end_tokens.size(0)
if c <= 512:
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=True,
)
sequence_output = output[0]
attention = output[-1][-1]
#attention = torch.cat([output[-1][-1],output[-1][-2]], dim=1)
else:
new_input_ids, new_attention_mask, num_seg = [], [], []
seq_len = attention_mask.sum(1).cpu().numpy().astype(np.int32).tolist()
for i, l_i in enumerate(seq_len):
if l_i <= 512:
new_input_ids.append(input_ids[i, :512])
new_attention_mask.append(attention_mask[i, :512])
num_seg.append(1)
else:
input_ids1 = torch.cat([input_ids[i, :512 - len_end], end_tokens], dim=-1)
input_ids2 = torch.cat([start_tokens, input_ids[i, (l_i - 512 + len_start): l_i]], dim=-1)
attention_mask1 = attention_mask[i, :512]
attention_mask2 = attention_mask[i, (l_i - 512): l_i]
new_input_ids.extend([input_ids1, input_ids2])
new_attention_mask.extend([attention_mask1, attention_mask2])
num_seg.append(2)
input_ids = torch.stack(new_input_ids, dim=0)
attention_mask = torch.stack(new_attention_mask, dim=0)
output = model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=True,
)
sequence_output = output[0]
attention = output[-1][-1]
#attention = torch.cat([output[-1][-1],output[-1][-2]], dim=1)
i = 0
new_output, new_attention = [], []
for (n_s, l_i) in zip(num_seg, seq_len):
if n_s == 1:
output = F.pad(sequence_output[i], (0, 0, 0, c - 512))
att = F.pad(attention[i], (0, c - 512, 0, c - 512))
new_output.append(output)
new_attention.append(att)
elif n_s == 2:
output1 = sequence_output[i][:512 - len_end]
mask1 = attention_mask[i][:512 - len_end]
att1 = attention[i][:, :512 - len_end, :512 - len_end]
output1 = F.pad(output1, (0, 0, 0, c - 512 + len_end))
mask1 = F.pad(mask1, (0, c - 512 + len_end))
att1 = F.pad(att1, (0, c - 512 + len_end, 0, c - 512 + len_end))
output2 = sequence_output[i + 1][len_start:]
mask2 = attention_mask[i + 1][len_start:]
att2 = attention[i + 1][:, len_start:, len_start:]
output2 = F.pad(output2, (0, 0, l_i - 512 + len_start, c - l_i))
mask2 = F.pad(mask2, (l_i - 512 + len_start, c - l_i))
att2 = F.pad(att2, [l_i - 512 + len_start, c - l_i, l_i - 512 + len_start, c - l_i])
mask = mask1 + mask2 + 1e-10
output = (output1 + output2) / mask.unsqueeze(-1)
att = (att1 + att2)
att = att / (att.sum(-1, keepdim=True) + 1e-10)
new_output.append(output)
new_attention.append(att)
i += n_s
sequence_output = torch.stack(new_output, dim=0)
attention = torch.stack(new_attention, dim=0)
return sequence_output, attention