-
Notifications
You must be signed in to change notification settings - Fork 1
/
ogb_vessel.py
389 lines (313 loc) · 15.7 KB
/
ogb_vessel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import argparse
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.nn import Parameter
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, SAGEConv
from ogb.linkproppred import PygLinkPropPredDataset, Evaluator
from sfeature import BloomSignature
from collections import defaultdict
from logger import Logger
import wandb
import time
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GCN, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(
GCNConv(in_channels, hidden_channels, normalize=False))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, normalize=False,improved=True))
self.convs.append(
GCNConv(hidden_channels, out_channels, normalize=False,improved=True))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
def forward(self, x, adj_t):
for conv in self.convs[:-1]:
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(SAGE, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
def forward(self, x, adj_t):
for conv in self.convs[:-1]:
x = conv(x, adj_t)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x
class LinkPredictor(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, attr_dim, num_layers,
dropout, beta=1.0, ln=True, twolayerlin=False, tailact=False):
super(LinkPredictor, self).__init__()
self.register_parameter("beta", Parameter(beta*torch.ones((1))))
lnfn = lambda dim, ln: torch.nn.LayerNorm(dim) if ln else torch.nn.Identity()
self.xcnlin = torch.nn.Sequential(
torch.nn.Linear(attr_dim, hidden_channels),
torch.nn.Dropout(dropout, inplace=True), torch.nn.ReLU(inplace=True),
torch.nn.Linear(hidden_channels, hidden_channels),
lnfn(hidden_channels, ln), torch.nn.Dropout(dropout, inplace=True),
torch.nn.ReLU(inplace=True), torch.nn.Linear(hidden_channels, hidden_channels) if not tailact else torch.nn.Identity())
self.xijlin = torch.nn.Sequential(
torch.nn.Linear(in_channels, hidden_channels), lnfn(hidden_channels, ln),
torch.nn.Dropout(dropout, inplace=True), torch.nn.ReLU(inplace=True),
torch.nn.Linear(hidden_channels, hidden_channels) if not tailact else torch.nn.Identity())
self.lins = torch.nn.Sequential(torch.nn.Linear(hidden_channels, hidden_channels),
lnfn(hidden_channels, ln),
torch.nn.Dropout(dropout, inplace=True),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(hidden_channels, hidden_channels) if twolayerlin else torch.nn.Identity(),
lnfn(hidden_channels, ln) if twolayerlin else torch.nn.Identity(),
torch.nn.Dropout(dropout, inplace=True) if twolayerlin else torch.nn.Identity(),
torch.nn.ReLU(inplace=True) if twolayerlin else torch.nn.Identity(),
torch.nn.Linear(hidden_channels, out_channels))
self.dropout = dropout
def reset_parameters(self):
for net in [self.xcnlin, self.xijlin, self.lins]:
for layer in net:
if hasattr(layer, 'reset_parameters'):
layer.reset_parameters()
def forward(self, x_i, x_j, edge_attr):
# xij = torch.cat([x_i, x_j], dim=-1)
# relative distance
mask = x_i[:,-1] < x_j[:,-1]
x_i[mask], x_j[mask] = x_j[mask], x_i[mask]
xij = x_i-x_j
xij = self.xijlin(xij)
xcn = self.xcnlin(edge_attr)
x = self.lins(xcn*self.beta+xij)
return torch.sigmoid(x)
def train(model, predictor, data, split_edge, optimizer, batch_size):
model.train()
predictor.train()
pos_train_edge = split_edge['train']['edge'].to(data.x.device)
neg_train_edge = split_edge['train']['edge_neg'].to(data.x.device)
total_loss = total_examples = 0
for perm in DataLoader(range(pos_train_edge.size(0)), batch_size,
shuffle=True):
optimizer.zero_grad()
h = model(data.x, data.adj_t)
edge = pos_train_edge[perm].t()
pos_out = predictor(h[edge[0]], h[edge[1]], data.edge_attr_pos[perm])
pos_loss = -torch.log(pos_out + 1e-15).mean()
# random element of previously sampled negative edges
# negative samples are obtained by using spatial sampling criteria
edge = neg_train_edge[perm].t()
neg_out = predictor(h[edge[0]], h[edge[1]], data.edge_attr_neg[perm])
neg_loss = -torch.log(1 - neg_out + 1e-15).mean()
loss = pos_loss + neg_loss
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(predictor.parameters(), 1.0)
optimizer.step()
num_examples = pos_out.size(0)
total_loss += loss.item() * num_examples
total_examples += num_examples
return total_loss / total_examples
@torch.no_grad()
def test(model, predictor, data, bloom_sketch, split_edge, evaluator, batch_size):
model.eval()
predictor.eval()
dt = 0
sta = time.time()
h = model(data.x, data.adj_t)
dt += time.time()-sta
pos_train_edge = split_edge['train']['edge'].to(h.device)
neg_train_edge = split_edge['train']['edge_neg'].to(h.device)
pos_valid_edge = split_edge['valid']['edge'].to(h.device)
neg_valid_edge = split_edge['valid']['edge_neg'].to(h.device)
pos_test_edge = split_edge['test']['edge'].to(h.device)
neg_test_edge = split_edge['test']['edge_neg'].to(h.device)
pos_train_attr = bloom_sketch.get_pairwise_feature(pos_train_edge.t().cpu(), 'pos_train')
neg_train_attr = bloom_sketch.get_pairwise_feature(neg_train_edge.t().cpu(), 'neg_train')
pos_valid_attr = bloom_sketch.get_pairwise_feature(pos_valid_edge.t().cpu(), 'pos_valid')
neg_valid_attr = bloom_sketch.get_pairwise_feature(neg_valid_edge.t().cpu(), 'neg_valid')
pos_train_preds = []
for perm in DataLoader(range(pos_train_edge.size(0)), batch_size):
edge = pos_train_edge[perm].t()
pos_train_preds += [predictor(h[edge[0]], h[edge[1]], pos_train_attr[perm]).squeeze().cpu()]
pos_train_pred = torch.cat(pos_train_preds, dim=0)
neg_train_preds = []
for perm in DataLoader(range(neg_train_edge.size(0)), batch_size):
edge = neg_train_edge[perm].t()
neg_train_preds += [predictor(h[edge[0]], h[edge[1]], neg_train_attr[perm]).squeeze().cpu()]
neg_train_pred = torch.cat(neg_train_preds, dim=0)
pos_valid_preds = []
for perm in DataLoader(range(pos_valid_edge.size(0)), batch_size):
edge = pos_valid_edge[perm].t()
pos_valid_preds += [predictor(h[edge[0]], h[edge[1]], pos_valid_attr[perm]).squeeze().cpu()]
pos_valid_pred = torch.cat(pos_valid_preds, dim=0)
neg_valid_preds = []
for perm in DataLoader(range(neg_valid_edge.size(0)), batch_size):
edge = neg_valid_edge[perm].t()
neg_valid_preds += [predictor(h[edge[0]], h[edge[1]], neg_valid_attr[perm]).squeeze().cpu()]
neg_valid_pred = torch.cat(neg_valid_preds, dim=0)
sta = time.time()
pos_test_preds = []
pos_test_attr = bloom_sketch.get_pairwise_feature(pos_test_edge.t().cpu(), 'pos_test', parallel=False)
for perm in DataLoader(range(pos_test_edge.size(0)), batch_size):
edge = pos_test_edge[perm].t()
pos_test_preds += [predictor(h[edge[0]], h[edge[1]], pos_test_attr[perm]).squeeze().cpu()]
pos_test_pred = torch.cat(pos_test_preds, dim=0)
neg_test_preds = []
neg_test_attr = bloom_sketch.get_pairwise_feature(neg_test_edge.t().cpu(), 'neg_test', parallel=False)
for perm in DataLoader(range(neg_test_edge.size(0)), batch_size):
edge = neg_test_edge[perm].t()
neg_test_preds += [predictor(h[edge[0]], h[edge[1]], neg_test_attr[perm]).squeeze().cpu()]
neg_test_pred = torch.cat(neg_test_preds, dim=0)
dt += time.time()-sta
wandb.log({'d_inf': dt})
train_rocauc = evaluator.eval({
'y_pred_pos': pos_train_pred,
'y_pred_neg': neg_train_pred,
})[f'rocauc']
valid_rocauc = evaluator.eval({
'y_pred_pos': pos_valid_pred,
'y_pred_neg': neg_valid_pred,
})[f'rocauc']
test_rocauc = evaluator.eval({
'y_pred_pos': pos_test_pred,
'y_pred_neg': neg_test_pred,
})[f'rocauc']
return train_rocauc, valid_rocauc, test_rocauc
def main():
parser = argparse.ArgumentParser(description='OGBL-VESSEL (GNN) Algorithm.')
parser.add_argument('--dataset', type=str, default='ogbl-vessel')
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--log_steps', type=int, default=1)
parser.add_argument('--use_node_embedding', action='store_true')
parser.add_argument('--use_sage', action='store_true')
parser.add_argument('--num_layers', type=int, default=3)
parser.add_argument('--hidden_channels', type=int, default=256)
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--batch_size', type=int, default=64 * 1024)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--epochs', type=int, default=100)
parser.add_argument('--eval_steps', type=int, default=1)
parser.add_argument('--runs', type=int, default=5)
parser.add_argument('--use-containment', action='store_true')
parser.add_argument('--use-complement', action='store_true')
parser.add_argument('--use-cosine', action='store_true')
parser.add_argument('--use-cross-intersection', action='store_true')
parser.add_argument('--packing', action='store_true')
parser.add_argument('--bf-dim', type=int, nargs='+', default=[1024, 4096])
parser.add_argument('--dim_sign', type=int, nargs='+', default=[2048, 4096])
parser.add_argument('--hashing-batch-size', type=int, default=2 ** 16)
parser.add_argument('--degree-limit', type=int, default=None)
parser.add_argument('--hops', type=int, default=1)
parser.add_argument('--seed', type=int, default=2023)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--add_self_loops', action='store_true')
args = parser.parse_args()
print(args)
wandb.init(
project=f"bloom-link-prediction-{args.dataset}",
config=vars(args),
)
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
dataset = PygLinkPropPredDataset('ogbl-vessel',
transform=T.ToSparseTensor())
data = dataset[0]
split_edge = dataset.get_edge_split()
# train_edge_index = split_edge['train']['edge'].t()
# bloom_sketch = BloomSketch(data, train_edge_index, data.num_nodes, device, args)
# train_pos_attr = bloom_sketch.get_edge_features(train_edge_index)
# edge_attr_dim = train_pos_attr.shape[1]
# print(f'Edge attribute dim = {edge_attr_dim}')
train_edge_index = split_edge['train']['edge'].t()
bloom_sketch = BloomSignature(train_edge_index, data.num_nodes, args.dim_sign, args, parallel=True)
train_edge_attr = bloom_sketch.get_pairwise_feature(train_edge_index)
edge_attr_dim = train_edge_attr.shape[1]
print(f'Edge attribute dim = {edge_attr_dim}')
data.edge_attr_pos = train_edge_attr
data.edge_attr_neg = bloom_sketch.get_pairwise_feature(split_edge['train']['edge_neg'].t())
# normalize x,y,z coordinates
# data.x[:, 0] = torch.nn.functional.normalize(data.x[:, 0], dim=0)
# data.x[:, 1] = torch.nn.functional.normalize(data.x[:, 1], dim=0)
# data.x[:, 2] = torch.nn.functional.normalize(data.x[:, 2], dim=0)
# use z-score normalization
data.x = (data.x - data.x.mean(0)) / (data.x.std(0) + 1e-9)
data.x = data.x.to(torch.float)
if args.use_node_embedding:
data.x = torch.cat([data.x, torch.load('embedding.pt')], dim=-1)
data = data.to(device)
if args.use_sage:
model = SAGE(data.num_features, args.hidden_channels,
args.hidden_channels, args.num_layers,
args.dropout).to(device)
if args.add_self_loops:
data.adj_t = data.adj_t.set_diag()
else:
model = GCN(data.num_features, args.hidden_channels,
args.hidden_channels, args.num_layers,
args.dropout).to(device)
# Pre-compute GCN normalization.
adj_t = data.adj_t.set_diag()
deg = adj_t.sum(dim=1).to(torch.float)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
adj_t = deg_inv_sqrt.view(-1, 1) * adj_t * deg_inv_sqrt.view(1, -1)
data.adj_t = adj_t
predictor = LinkPredictor(args.hidden_channels, args.hidden_channels, 1, edge_attr_dim,
args.num_layers, args.dropout).to(device)
evaluator = Evaluator(name='ogbl-vessel')
logger = Logger(args.runs, args)
for run in range(args.runs):
best_results = defaultdict(lambda: (0, 0))
model.reset_parameters()
predictor.reset_parameters()
optimizer = torch.optim.Adam(
list(model.parameters()) + list(predictor.parameters()),
lr=args.lr)
for epoch in range(1, 1 + args.epochs):
sta = time.time()
loss = train(model, predictor, data, split_edge, optimizer,
args.batch_size)
wandb.log({
"run": run+1, "epoch": epoch, "loss": loss, "d_train": time.time()-sta,
})
if epoch % args.eval_steps == 0:
result = test(model, predictor, data, bloom_sketch, split_edge, evaluator,
args.batch_size)
logger.add_result(run, result)
train_roc_auc, valid_roc_auc, test_roc_auc = result
if (valid_roc_auc > best_results['auc'][0]):
best_results['auc'] = (valid_roc_auc, test_roc_auc)
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'Train: {train_roc_auc:.4f}, '
f'Valid: {valid_roc_auc:.4f}, '
f'Test: {test_roc_auc:.4f}')
wandb.log({
f"train_auc": 100 * train_roc_auc,
f"valid_auc": 100 * valid_roc_auc,
f"test_auc": 100 * test_roc_auc,
f"best_test_auc": 100 * best_results['auc'][1],
})
print('GNN')
logger.print_statistics(run)
bloom_sketch.clean_cache()
print('GNN')
logger.print_statistics()
if __name__ == "__main__":
main()