-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathtrain.py
347 lines (298 loc) · 13.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
'''
Script for training models.
'''
from torch import optim
import torch
import torch.utils.data
import argparse
import torch.backends.cudnn as cudnn
import random
import json
import sys
# Import dataloaders
import Data.cifar10 as cifar10
import Data.cifar100 as cifar100
import Data.tiny_imagenet as tiny_imagenet
# Import network models
from Net.resnet import resnet50, resnet110
from Net.resnet_tiny_imagenet import resnet50 as resnet50_ti
from Net.wide_resnet import wide_resnet_cifar
from Net.densenet import densenet121
# Import loss functions
from Losses.loss import cross_entropy, focal_loss, focal_loss_adaptive
from Losses.loss import mmce, mmce_weighted
from Losses.loss import brier_score
# Import train and validation utilities
from train_utils import train_single_epoch, test_single_epoch
# Import validation metrics
from Metrics.metrics import test_classification_net
dataset_num_classes = {
'cifar10': 10,
'cifar100': 100,
'tiny_imagenet': 200
}
dataset_loader = {
'cifar10': cifar10,
'cifar100': cifar100,
'tiny_imagenet': tiny_imagenet
}
models = {
'resnet50': resnet50,
'resnet50_ti': resnet50_ti,
'resnet110': resnet110,
'wide_resnet': wide_resnet_cifar,
'densenet121': densenet121
}
def loss_function_save_name(loss_function,
scheduled=False,
gamma=1.0,
gamma1=1.0,
gamma2=1.0,
gamma3=1.0,
lamda=1.0):
res_dict = {
'cross_entropy': 'cross_entropy',
'focal_loss': 'focal_loss_gamma_' + str(gamma),
'focal_loss_adaptive': 'focal_loss_adaptive_gamma_' + str(gamma),
'mmce': 'mmce_lamda_' + str(lamda),
'mmce_weighted': 'mmce_weighted_lamda_' + str(lamda),
'brier_score': 'brier_score'
}
if (loss_function == 'focal_loss' and scheduled == True):
res_str = 'focal_loss_scheduled_gamma_' + str(gamma1) + '_' + str(gamma2) + '_' + str(gamma3)
else:
res_str = res_dict[loss_function]
return res_str
def parseArgs():
default_dataset = 'cifar10'
dataset_root = './'
train_batch_size = 128
test_batch_size = 128
learning_rate = 0.1
momentum = 0.9
optimiser = "sgd"
loss = "cross_entropy"
gamma = 1.0
gamma2 = 1.0
gamma3 = 1.0
lamda = 1.0
weight_decay = 5e-4
log_interval = 50
save_interval = 50
save_loc = './'
model_name = None
saved_model_name = "resnet50_cross_entropy_350.model"
load_loc = './'
model = "resnet50"
epoch = 350
first_milestone = 150 #Milestone for change in lr
second_milestone = 250 #Milestone for change in lr
gamma_schedule_step1 = 100
gamma_schedule_step2 = 250
parser = argparse.ArgumentParser(
description="Training for calibration.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--dataset", type=str, default=default_dataset,
dest="dataset", help='dataset to train on')
parser.add_argument("--dataset-root", type=str, default=dataset_root,
dest="dataset_root", help='root path of the dataset (for tiny imagenet)')
parser.add_argument("--data-aug", action="store_true", dest="data_aug")
parser.set_defaults(data_aug=True)
parser.add_argument("-g", action="store_true", dest="gpu",
help="Use GPU")
parser.set_defaults(gpu=True)
parser.add_argument("--load", action="store_true", dest="load",
help="Load from pretrained model")
parser.set_defaults(load=False)
parser.add_argument("-b", type=int, default=train_batch_size,
dest="train_batch_size", help="Batch size")
parser.add_argument("-tb", type=int, default=test_batch_size,
dest="test_batch_size", help="Test Batch size")
parser.add_argument("-e", type=int, default=epoch, dest="epoch",
help='Number of training epochs')
parser.add_argument("--lr", type=float, default=learning_rate,
dest="learning_rate", help='Learning rate')
parser.add_argument("--mom", type=float, default=momentum,
dest="momentum", help='Momentum')
parser.add_argument("--nesterov", action="store_true", dest="nesterov",
help="Whether to use nesterov momentum in SGD")
parser.set_defaults(nesterov=False)
parser.add_argument("--decay", type=float, default=weight_decay,
dest="weight_decay", help="Weight Decay")
parser.add_argument("--opt", type=str, default=optimiser,
dest="optimiser",
help='Choice of optimisation algorithm')
parser.add_argument("--loss", type=str, default=loss, dest="loss_function",
help="Loss function to be used for training")
parser.add_argument("--loss-mean", action="store_true", dest="loss_mean",
help="whether to take mean of loss instead of sum to train")
parser.set_defaults(loss_mean=False)
parser.add_argument("--gamma", type=float, default=gamma,
dest="gamma", help="Gamma for focal components")
parser.add_argument("--gamma2", type=float, default=gamma2,
dest="gamma2", help="Gamma for different focal components")
parser.add_argument("--gamma3", type=float, default=gamma3,
dest="gamma3", help="Gamma for different focal components")
parser.add_argument("--lamda", type=float, default=lamda,
dest="lamda", help="Regularization factor")
parser.add_argument("--gamma-schedule", type=int, default=0,
dest="gamma_schedule", help="Schedule gamma or not")
parser.add_argument("--gamma-schedule-step1", type=int, default=gamma_schedule_step1,
dest="gamma_schedule_step1", help="1st step for gamma schedule")
parser.add_argument("--gamma-schedule-step2", type=int, default=gamma_schedule_step2,
dest="gamma_schedule_step2", help="2nd step for gamma schedule")
parser.add_argument("--log-interval", type=int, default=log_interval,
dest="log_interval", help="Log Interval on Terminal")
parser.add_argument("--save-interval", type=int, default=save_interval,
dest="save_interval", help="Save Interval on Terminal")
parser.add_argument("--saved_model_name", type=str, default=saved_model_name,
dest="saved_model_name", help="file name of the pre-trained model")
parser.add_argument("--save-path", type=str, default=save_loc,
dest="save_loc",
help='Path to export the model')
parser.add_argument("--model-name", type=str, default=model_name,
dest="model_name",
help='name of the model')
parser.add_argument("--load-path", type=str, default=load_loc,
dest="load_loc",
help='Path to load the model from')
parser.add_argument("--model", type=str, default=model, dest="model",
help='Model to train')
parser.add_argument("--first-milestone", type=int, default=first_milestone,
dest="first_milestone", help="First milestone to change lr")
parser.add_argument("--second-milestone", type=int, default=second_milestone,
dest="second_milestone", help="Second milestone to change lr")
return parser.parse_args()
if __name__ == "__main__":
torch.manual_seed(1)
args = parseArgs()
cuda = False
if (torch.cuda.is_available() and args.gpu):
cuda = True
device = torch.device("cuda" if cuda else "cpu")
print("CUDA set: " + str(cuda))
num_classes = dataset_num_classes[args.dataset]
# Choosing the model to train
net = models[args.model](num_classes=num_classes)
# Setting model name
if args.model_name is None:
args.model_name = args.model
if args.gpu is True:
net.cuda()
net = torch.nn.DataParallel(
net, device_ids=range(torch.cuda.device_count()))
cudnn.benchmark = True
start_epoch = 0
num_epochs = args.epoch
if args.load:
net.load_state_dict(torch.load(args.save_loc + args.saved_model_name))
start_epoch = int(args.saved_model_name[args.saved_model_name.rfind('_')+1:args.saved_model_name.rfind('.model')])
if args.optimiser == "sgd":
opt_params = net.parameters()
optimizer = optim.SGD(opt_params,
lr=args.learning_rate,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=args.nesterov)
elif args.optimiser == "adam":
opt_params = net.parameters()
optimizer = optim.Adam(opt_params,
lr=args.learning_rate,
weight_decay=args.weight_decay)
scheduler = optim.lr_scheduler.MultiStepLR(optimizer, milestones=[args.first_milestone, args.second_milestone], gamma=0.1)
if (args.dataset == 'tiny_imagenet'):
train_loader = dataset_loader[args.dataset].get_data_loader(
root=args.dataset_root,
split='train',
batch_size=args.train_batch_size,
pin_memory=args.gpu)
val_loader = dataset_loader[args.dataset].get_data_loader(
root=args.dataset_root,
split='val',
batch_size=args.test_batch_size,
pin_memory=args.gpu)
test_loader = dataset_loader[args.dataset].get_data_loader(
root=args.dataset_root,
split='val',
batch_size=args.test_batch_size,
pin_memory=args.gpu)
else:
train_loader, val_loader = dataset_loader[args.dataset].get_train_valid_loader(
batch_size=args.train_batch_size,
augment=args.data_aug,
random_seed=1,
pin_memory=args.gpu
)
test_loader = dataset_loader[args.dataset].get_test_loader(
batch_size=args.test_batch_size,
pin_memory=args.gpu
)
training_set_loss = {}
val_set_loss = {}
test_set_loss = {}
val_set_err = {}
for epoch in range(0, start_epoch):
scheduler.step()
best_val_acc = 0
for epoch in range(start_epoch, num_epochs):
scheduler.step()
if (args.loss_function == 'focal_loss' and args.gamma_schedule == 1):
if (epoch < args.gamma_schedule_step1):
gamma = args.gamma
elif (epoch >= args.gamma_schedule_step1 and epoch < args.gamma_schedule_step2):
gamma = args.gamma2
else:
gamma = args.gamma3
else:
gamma = args.gamma
train_loss = train_single_epoch(epoch,
net,
train_loader,
optimizer,
device,
loss_function=args.loss_function,
gamma=gamma,
lamda=args.lamda,
loss_mean=args.loss_mean)
val_loss = test_single_epoch(epoch,
net,
val_loader,
device,
loss_function=args.loss_function,
gamma=gamma,
lamda=args.lamda)
test_loss = test_single_epoch(epoch,
net,
val_loader,
device,
loss_function=args.loss_function,
gamma=gamma,
lamda=args.lamda)
_, val_acc, _, _, _ = test_classification_net(net, val_loader, device)
training_set_loss[epoch] = train_loss
val_set_loss[epoch] = val_loss
test_set_loss[epoch] = test_loss
val_set_err[epoch] = 1 - val_acc
if val_acc > best_val_acc:
best_val_acc = val_acc
print('New best error: %.4f' % (1 - best_val_acc))
save_name = args.save_loc + \
args.model_name + '_' + \
loss_function_save_name(args.loss_function, args.gamma_schedule, gamma, args.gamma, args.gamma2, args.gamma3, args.lamda) + \
'_best_' + \
str(epoch + 1) + '.model'
torch.save(net.state_dict(), save_name)
if (epoch + 1) % args.save_interval == 0:
save_name = args.save_loc + \
args.model_name + '_' + \
loss_function_save_name(args.loss_function, args.gamma_schedule, gamma, args.gamma, args.gamma2, args.gamma3, args.lamda) + \
'_' + str(epoch + 1) + '.model'
torch.save(net.state_dict(), save_name)
with open(save_name[:save_name.rfind('_')] + '_train_loss.json', 'a') as f:
json.dump(training_set_loss, f)
with open(save_name[:save_name.rfind('_')] + '_val_loss.json', 'a') as fv:
json.dump(val_set_loss, fv)
with open(save_name[:save_name.rfind('_')] + '_test_loss.json', 'a') as ft:
json.dump(test_set_loss, ft)
with open(save_name[:save_name.rfind('_')] + '_val_error.json', 'a') as ft:
json.dump(val_set_err, ft)