-
Notifications
You must be signed in to change notification settings - Fork 49
/
ntrugen.py
executable file
·245 lines (214 loc) · 7.04 KB
/
ntrugen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
"""
This file implements the section 3.8.2 of Falcon's documentation.
"""
from fft import fft, ifft, add_fft, mul_fft, adj_fft, div_fft
from fft import add, mul, div, adj
from ntt import ntt
from common import sqnorm
from samplerz import samplerz
q = 12 * 1024 + 1
def karatsuba(a, b, n):
"""
Karatsuba multiplication between polynomials.
The coefficients may be either integer or real.
"""
if n == 1:
return [a[0] * b[0], 0]
else:
n2 = n // 2
a0 = a[:n2]
a1 = a[n2:]
b0 = b[:n2]
b1 = b[n2:]
ax = [a0[i] + a1[i] for i in range(n2)]
bx = [b0[i] + b1[i] for i in range(n2)]
a0b0 = karatsuba(a0, b0, n2)
a1b1 = karatsuba(a1, b1, n2)
axbx = karatsuba(ax, bx, n2)
for i in range(n):
axbx[i] -= (a0b0[i] + a1b1[i])
ab = [0] * (2 * n)
for i in range(n):
ab[i] += a0b0[i]
ab[i + n] += a1b1[i]
ab[i + n2] += axbx[i]
return ab
def karamul(a, b):
"""
Karatsuba multiplication, followed by reduction mod (x ** n + 1).
"""
n = len(a)
ab = karatsuba(a, b, n)
abr = [ab[i] - ab[i + n] for i in range(n)]
return abr
def galois_conjugate(a):
"""
Galois conjugate of an element a in Q[x] / (x ** n + 1).
Here, the Galois conjugate of a(x) is simply a(-x).
"""
n = len(a)
return [((-1) ** i) * a[i] for i in range(n)]
def field_norm(a):
"""
Project an element a of Q[x] / (x ** n + 1) onto Q[x] / (x ** (n // 2) + 1).
Only works if n is a power-of-two.
"""
n2 = len(a) // 2
ae = [a[2 * i] for i in range(n2)]
ao = [a[2 * i + 1] for i in range(n2)]
ae_squared = karamul(ae, ae)
ao_squared = karamul(ao, ao)
res = ae_squared[:]
for i in range(n2 - 1):
res[i + 1] -= ao_squared[i]
res[0] += ao_squared[n2 - 1]
return res
def lift(a):
"""
Lift an element a of Q[x] / (x ** (n // 2) + 1) up to Q[x] / (x ** n + 1).
The lift of a(x) is simply a(x ** 2) seen as an element of Q[x] / (x ** n + 1).
"""
n = len(a)
res = [0] * (2 * n)
for i in range(n):
res[2 * i] = a[i]
return res
def bitsize(a):
"""
Compute the bitsize of an element of Z (not counting the sign).
The bitsize is rounded to the next multiple of 8.
This makes the function slightly imprecise, but faster to compute.
"""
val = abs(a)
res = 0
while val:
res += 8
val >>= 8
return res
def reduce(f, g, F, G):
"""
Reduce (F, G) relatively to (f, g).
This is done via Babai's reduction.
(F, G) <-- (F, G) - k * (f, g), where k = round((F f* + G g*) / (f f* + g g*)).
Corresponds to algorithm 7 (Reduce) of Falcon's documentation.
"""
n = len(f)
size = max(53, bitsize(min(f)), bitsize(max(f)), bitsize(min(g)), bitsize(max(g)))
f_adjust = [elt >> (size - 53) for elt in f]
g_adjust = [elt >> (size - 53) for elt in g]
fa_fft = fft(f_adjust)
ga_fft = fft(g_adjust)
while(1):
# Because we work in finite precision to reduce very large polynomials,
# we may need to perform the reduction several times.
Size = max(53, bitsize(min(F)), bitsize(max(F)), bitsize(min(G)), bitsize(max(G)))
if Size < size:
break
F_adjust = [elt >> (Size - 53) for elt in F]
G_adjust = [elt >> (Size - 53) for elt in G]
Fa_fft = fft(F_adjust)
Ga_fft = fft(G_adjust)
den_fft = add_fft(mul_fft(fa_fft, adj_fft(fa_fft)), mul_fft(ga_fft, adj_fft(ga_fft)))
num_fft = add_fft(mul_fft(Fa_fft, adj_fft(fa_fft)), mul_fft(Ga_fft, adj_fft(ga_fft)))
k_fft = div_fft(num_fft, den_fft)
k = ifft(k_fft)
k = [int(round(elt)) for elt in k]
if all(elt == 0 for elt in k):
break
# The two next lines are the costliest operations in ntru_gen
# (more than 75% of the total cost in dimension n = 1024).
# There are at least two ways to make them faster:
# - replace Karatsuba with Toom-Cook
# - mutualized Karatsuba, see ia.cr/2020/268
# For simplicity reasons, we didn't implement these optimisations here.
fk = karamul(f, k)
gk = karamul(g, k)
for i in range(n):
F[i] -= fk[i] << (Size - size)
G[i] -= gk[i] << (Size - size)
return F, G
def xgcd(b, n):
"""
Compute the extended GCD of two integers b and n.
Return d, u, v such that d = u * b + v * n, and d is the GCD of b, n.
"""
x0, x1, y0, y1 = 1, 0, 0, 1
while n != 0:
q, b, n = b // n, n, b % n
x0, x1 = x1, x0 - q * x1
y0, y1 = y1, y0 - q * y1
return b, x0, y0
def ntru_solve(f, g):
"""
Solve the NTRU equation for f and g.
Corresponds to NTRUSolve in Falcon's documentation.
"""
n = len(f)
if n == 1:
f0 = f[0]
g0 = g[0]
d, u, v = xgcd(f0, g0)
if d != 1:
raise ValueError
else:
return [- q * v], [q * u]
else:
fp = field_norm(f)
gp = field_norm(g)
Fp, Gp = ntru_solve(fp, gp)
F = karamul(lift(Fp), galois_conjugate(g))
G = karamul(lift(Gp), galois_conjugate(f))
F, G = reduce(f, g, F, G)
return F, G
def gs_norm(f, g, q):
"""
Compute the squared Gram-Schmidt norm of the NTRU matrix generated by f, g.
This matrix is [[g, - f], [G, - F]].
This algorithm is equivalent to line 9 of algorithm 5 (NTRUGen).
"""
sqnorm_fg = sqnorm([f, g])
ffgg = add(mul(f, adj(f)), mul(g, adj(g)))
Ft = div(adj(g), ffgg)
Gt = div(adj(f), ffgg)
sqnorm_FG = (q ** 2) * sqnorm([Ft, Gt])
return max(sqnorm_fg, sqnorm_FG)
def gen_poly(n):
"""
Generate a polynomial of degree at most (n - 1), with coefficients
following a discrete Gaussian distribution D_{Z, 0, sigma_fg} with
sigma_fg = 1.17 * sqrt(q / (2 * n)).
"""
# 1.17 * sqrt(12289 / 8192)
sigma = 1.43300980528773
assert(n < 4096)
f0 = [samplerz(0, sigma, sigma - 0.001) for _ in range(4096)]
f = [0] * n
k = 4096 // n
for i in range(n):
# We use the fact that adding k Gaussian samples of std. dev. sigma
# gives a Gaussian sample of std. dev. sqrt(k) * sigma.
f[i] = sum(f0[i * k + j] for j in range(k))
return f
def ntru_gen(n):
"""
Implement the algorithm 5 (NTRUGen) of Falcon's documentation.
At the end of the function, polynomials f, g, F, G in Z[x]/(x ** n + 1)
are output, which verify f * G - g * F = q mod (x ** n + 1).
"""
while True:
f = gen_poly(n)
g = gen_poly(n)
if gs_norm(f, g, q) > (1.17 ** 2) * q:
continue
f_ntt = ntt(f)
if any((elem == 0) for elem in f_ntt):
continue
try:
F, G = ntru_solve(f, g)
F = [int(coef) for coef in F]
G = [int(coef) for coef in G]
return f, g, F, G
# If the NTRU equation cannot be solved, a ValueError is raised
# In this case, we start again
except ValueError:
continue