-
Notifications
You must be signed in to change notification settings - Fork 25
/
train.py
178 lines (142 loc) · 7.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import tensorflow as tf
from datetime import datetime
from data_reader import DataReader
from model import Model
from utils import read_vocab, count_parameters, load_glove
# Parameters
# ==================================================
FLAGS = tf.flags.FLAGS
tf.flags.DEFINE_string("checkpoint_dir", 'checkpoints',
"""Path to checkpoint folder""")
tf.flags.DEFINE_string("log_dir", 'logs',
"""Path to log folder""")
tf.flags.DEFINE_integer("cell_dim", 50,
"""Hidden dimensions of GRU cells (default: 50)""")
tf.flags.DEFINE_integer("att_dim", 100,
"""Dimensionality of attention spaces (default: 100)""")
tf.flags.DEFINE_integer("emb_size", 200,
"""Dimensionality of word embedding (default: 200)""")
tf.flags.DEFINE_integer("num_classes", 5,
"""Number of classes (default: 5)""")
tf.flags.DEFINE_integer("num_checkpoints", 1,
"""Number of checkpoints to store (default: 1)""")
tf.flags.DEFINE_integer("num_epochs", 20,
"""Number of training epochs (default: 20)""")
tf.flags.DEFINE_integer("batch_size", 64,
"""Batch size (default: 64)""")
tf.flags.DEFINE_integer("display_step", 20,
"""Number of steps to display log into TensorBoard (default: 20)""")
tf.flags.DEFINE_float("learning_rate", 0.0005,
"""Learning rate (default: 0.0005)""")
tf.flags.DEFINE_float("max_grad_norm", 5.0,
"""Maximum value of the global norm of the gradients for clipping (default: 5.0)""")
tf.flags.DEFINE_float("dropout_rate", 0.5,
"""Probability of dropping neurons (default: 0.5)""")
tf.flags.DEFINE_boolean("allow_soft_placement", True,
"""Allow device soft device placement""")
if not tf.gfile.Exists(FLAGS.checkpoint_dir):
tf.gfile.MakeDirs(FLAGS.checkpoint_dir)
if not tf.gfile.Exists(FLAGS.log_dir):
tf.gfile.MakeDirs(FLAGS.log_dir)
train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train')
valid_writer = tf.summary.FileWriter(FLAGS.log_dir + '/valid')
test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
def loss_fn(labels, logits):
onehot_labels = tf.one_hot(labels, depth=FLAGS.num_classes)
cross_entropy_loss = tf.losses.softmax_cross_entropy(onehot_labels=onehot_labels,
logits=logits)
tf.summary.scalar('loss', cross_entropy_loss)
return cross_entropy_loss
def train_fn(loss):
trained_vars = tf.trainable_variables()
count_parameters(trained_vars)
# Gradient clipping
gradients = tf.gradients(loss, trained_vars)
clipped_grads, global_norm = tf.clip_by_global_norm(gradients, FLAGS.max_grad_norm)
tf.summary.scalar('global_grad_norm', global_norm)
# Add gradients and vars to summary
# for gradient, var in list(zip(clipped_grads, trained_vars)):
# if 'attention' in var.name:
# tf.summary.histogram(var.name + '/gradient', gradient)
# tf.summary.histogram(var.name, var)
# Define optimizer
global_step = tf.train.get_or_create_global_step()
optimizer = tf.train.RMSPropOptimizer(FLAGS.learning_rate)
train_op = optimizer.apply_gradients(zip(clipped_grads, trained_vars),
name='train_op',
global_step=global_step)
return train_op, global_step
def eval_fn(labels, logits):
predictions = tf.argmax(logits, axis=-1)
correct_preds = tf.equal(predictions, tf.cast(labels, tf.int64))
batch_acc = tf.reduce_mean(tf.cast(correct_preds, tf.float32))
tf.summary.scalar('accuracy', batch_acc)
total_acc, acc_update = tf.metrics.accuracy(labels, predictions, name='metrics/acc')
metrics_vars = tf.get_collection(tf.GraphKeys.LOCAL_VARIABLES, scope="metrics")
metrics_init = tf.variables_initializer(var_list=metrics_vars)
return batch_acc, total_acc, acc_update, metrics_init
def main(_):
vocab = read_vocab('data/yelp-2015-w2i.pkl')
glove_embs = load_glove('glove.6B.{}d.txt'.format(FLAGS.emb_size), FLAGS.emb_size, vocab)
data_reader = DataReader(train_file='data/yelp-2015-train.pkl',
dev_file='data/yelp-2015-dev.pkl',
test_file='data/yelp-2015-test.pkl')
config = tf.ConfigProto(allow_soft_placement=FLAGS.allow_soft_placement)
with tf.Session(config=config) as sess:
model = Model(cell_dim=FLAGS.cell_dim,
att_dim=FLAGS.att_dim,
vocab_size=len(vocab),
emb_size=FLAGS.emb_size,
num_classes=FLAGS.num_classes,
dropout_rate=FLAGS.dropout_rate,
pretrained_embs=glove_embs)
loss = loss_fn(model.labels, model.logits)
train_op, global_step = train_fn(loss)
batch_acc, total_acc, acc_update, metrics_init = eval_fn(model.labels, model.logits)
summary_op = tf.summary.merge_all()
sess.run(tf.global_variables_initializer())
train_writer.add_graph(sess.graph)
saver = tf.train.Saver(max_to_keep=FLAGS.num_checkpoints)
print('\n{}> Start training'.format(datetime.now()))
epoch = 0
valid_step = 0
test_step = 0
train_test_prop = len(data_reader.train_data) / len(data_reader.test_data)
test_batch_size = int(FLAGS.batch_size / train_test_prop)
best_acc = float('-inf')
while epoch < FLAGS.num_epochs:
epoch += 1
print('\n{}> Epoch: {}'.format(datetime.now(), epoch))
sess.run(metrics_init)
for batch_docs, batch_labels in data_reader.read_train_set(FLAGS.batch_size, shuffle=True):
_step, _, _loss, _acc, _ = sess.run([global_step, train_op, loss, batch_acc, acc_update],
feed_dict=model.get_feed_dict(batch_docs, batch_labels, training=True))
if _step % FLAGS.display_step == 0:
_summary = sess.run(summary_op, feed_dict=model.get_feed_dict(batch_docs, batch_labels))
train_writer.add_summary(_summary, global_step=_step)
print('Training accuracy = {:.2f}'.format(sess.run(total_acc) * 100))
sess.run(metrics_init)
for batch_docs, batch_labels in data_reader.read_valid_set(test_batch_size):
_loss, _acc, _ = sess.run([loss, batch_acc, acc_update], feed_dict=model.get_feed_dict(batch_docs, batch_labels))
valid_step += 1
if valid_step % FLAGS.display_step == 0:
_summary = sess.run(summary_op, feed_dict=model.get_feed_dict(batch_docs, batch_labels))
valid_writer.add_summary(_summary, global_step=valid_step)
print('Validation accuracy = {:.2f}'.format(sess.run(total_acc) * 100))
sess.run(metrics_init)
for batch_docs, batch_labels in data_reader.read_test_set(test_batch_size):
_loss, _acc, _ = sess.run([loss, batch_acc, acc_update], feed_dict=model.get_feed_dict(batch_docs, batch_labels))
test_step += 1
if test_step % FLAGS.display_step == 0:
_summary = sess.run(summary_op, feed_dict=model.get_feed_dict(batch_docs, batch_labels))
test_writer.add_summary(_summary, global_step=test_step)
test_acc = sess.run(total_acc) * 100
print('Testing accuracy = {:.2f}'.format(test_acc))
if test_acc > best_acc:
best_acc = test_acc
saver.save(sess, FLAGS.checkpoint_dir)
print('Best testing accuracy = {:.2f}'.format(test_acc))
print("{} Optimization Finished!".format(datetime.now()))
print('Best testing accuracy = {:.2f}'.format(best_acc))
if __name__ == '__main__':
tf.app.run()