-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_deepvelu.py
executable file
·377 lines (332 loc) · 17.7 KB
/
train_deepvelu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import numpy as np
import os
import argparse
import json
import h5py
import csv
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Activation, BatchNormalization, Concatenate, Dropout, UpSampling2D, add
from tensorflow.keras.callbacks import ModelCheckpoint, Callback, CSVLogger
from tensorflow.keras.models import Model, model_from_json
from tensorflow.keras.optimizers import Adam
os.environ["KERAS_BACKEND"] = "tensorflow"
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
class train_deepvel(object):
def __init__(self, root, noise, option, norm_filename='network/simulation_properties.npz'):
"""
Class used to train DeepVel
Parameters
----------
root : string
Name of the output files. Some extensions will be added for different files (weights, configuration, etc.)
noise : float
Noise standard deviation to be added during training. This helps avoid overfitting and
makes the training more robust
option : string
Indicates what needs to be done
"""
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# Currently, memory growth needs to be the same across GPUs
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
# logical_gpus = tf.config.experimental.list_logical_devices('GPU')
# print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Memory growth must be set before GPUs have been initialized
print(e)
self.root = root
self.option = option
# -----------------
# Data properties:
# -----------------
# Patch dimensions
self.nx = 48
self.ny = 48
# Number of types of inputs (intensitygrams, magnetograms, Dopplergrams)
self.n_types = 1
# Number of consecutive frames of a given input
self.n_times = 2
# Number of inputs
self.n_inputs = self.n_types * self.n_times
# Number of inferred velocity components
self.n_depths = 3
self.n_components = 2
self.n_outputs = self.n_depths*self.n_components
# -----------------
# Network properties:
# -----------------
# Architecture
self.n_filters = 64
self.kernel_size = 3
self.noise_level = noise
# Number of batches
self.batch_size = 10
self.n_training = 3600
self.n_validation = 900
self.batches_per_epoch_training = int(self.n_training / self.batch_size)
self.batches_per_epoch_validation = int(self.n_validation / self.batch_size)
self.n_training = self.batches_per_epoch_training*self.batch_size
self.n_validation = self.batches_per_epoch_validation*self.batch_size
# --------------------
# Training & validation sets:
# --------------------
# Training
self.input_files_training = 'training_validation_sets/input_training.npz'
self.input_keys_training = 'input_train'
self.output_files_training = 'training_validation_sets/output_training.npz'
self.output_keys_training = 'output_train'
# Validation
self.input_files_validation = 'training_validation_sets/input_validation.npz'
self.input_keys_validation = 'input_valid'
self.output_files_validation = 'training_validation_sets/output_validation.npz'
self.output_keys_validation = 'output_valid'
# Normalization
tmp = np.load(norm_filename)
self.ic_tau_1_min = tmp['ic_tau_1_min']
self.ic_tau_1_max = tmp['ic_tau_1_max']
self.ic_tau_1_mean = tmp['ic_tau_1_mean']
self.ic_tau_1_var = tmp['ic_tau_1_var']
self.ic_tau_1_median = tmp['ic_tau_1_median']
self.ic_tau_1_stddev = tmp['ic_tau_1_stddev']
self.vx_tau_1_min = tmp['vx_tau_1_min']
self.vx_tau_1_max = tmp['vx_tau_1_max']
self.vx_tau_1_mean = tmp['vx_tau_1_mean']
self.vx_tau_1_var = tmp['vx_tau_1_var']
self.vx_tau_1_median = tmp['vx_tau_1_median']
self.vx_tau_1_stddev = tmp['vx_tau_1_stddev']
self.vy_tau_1_min = tmp['vy_tau_1_min']
self.vy_tau_1_max = tmp['vy_tau_1_max']
self.vy_tau_1_mean = tmp['vy_tau_1_mean']
self.vy_tau_1_var = tmp['vy_tau_1_var']
self.vy_tau_1_median = tmp['vy_tau_1_median']
self.vy_tau_1_stddev = tmp['vy_tau_1_stddev']
self.vx_tau_01_min = tmp['vx_tau_01_min']
self.vx_tau_01_max = tmp['vx_tau_01_max']
self.vx_tau_01_mean = tmp['vx_tau_01_mean']
self.vx_tau_01_var = tmp['vx_tau_01_var']
self.vx_tau_01_median = tmp['vx_tau_01_median']
self.vx_tau_01_stddev = tmp['vx_tau_01_stddev']
self.vy_tau_01_min = tmp['vy_tau_01_min']
self.vy_tau_01_max = tmp['vy_tau_01_max']
self.vy_tau_01_mean = tmp['vy_tau_01_mean']
self.vy_tau_01_var = tmp['vy_tau_01_var']
self.vy_tau_01_median = tmp['vy_tau_01_median']
self.vy_tau_01_stddev = tmp['vy_tau_01_stddev']
self.vx_tau_001_min = tmp['vx_tau_001_min']
self.vx_tau_001_max = tmp['vx_tau_001_max']
self.vx_tau_001_mean = tmp['vx_tau_001_mean']
self.vx_tau_001_var = tmp['vx_tau_001_var']
self.vx_tau_001_median = tmp['vx_tau_001_median']
self.vx_tau_001_stddev = tmp['vx_tau_001_stddev']
self.vy_tau_001_min = tmp['vy_tau_001_min']
self.vy_tau_001_max = tmp['vy_tau_001_max']
self.vy_tau_001_mean = tmp['vy_tau_001_mean']
self.vy_tau_001_var = tmp['vy_tau_001_var']
self.vy_tau_001_median = tmp['vy_tau_001_median']
self.vy_tau_001_stddev = tmp['vy_tau_001_stddev']
def define_network(self):
print("Setting up network...")
inputs = Input(shape=(self.nx, self.ny, self.n_inputs))
x = inputs
conv1 = Conv2D(self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(x)
conv1 = BatchNormalization()(conv1)
conv1 = Activation('relu')(conv1)
conv1 = Dropout(0.5)(conv1)
stri1 = Conv2D(self.n_filters, (self.kernel_size, self.kernel_size), strides=(2, 2), padding='same',
kernel_initializer='he_normal')(conv1)
stri1 = BatchNormalization()(stri1)
stri1 = Activation('relu')(stri1)
conv2 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(stri1)
conv2 = BatchNormalization()(conv2)
conv2 = Activation('relu')(conv2)
conv2 = Dropout(0.5)(conv2)
stri2 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(2, 2), padding='same',
kernel_initializer='he_normal')(conv2)
stri2 = BatchNormalization()(stri2)
stri2 = Activation('relu')(stri2)
conv3 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(stri2)
conv3 = BatchNormalization()(conv3)
conv3 = Activation('relu')(conv3)
conv3 = Dropout(0.5)(conv3)
stri3 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(2, 2), padding='same',
kernel_initializer='he_normal')(conv3)
stri3 = BatchNormalization()(stri3)
stri3 = Activation('relu')(stri3)
convc = Conv2D(4 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(stri3)
convc = BatchNormalization()(convc)
convc = Activation('relu')(convc)
convc = Conv2D(4 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(convc)
convc = BatchNormalization()(convc)
convc = Activation('relu')(convc)
convc = Dropout(0.5)(convc)
upconv3 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal', activation='relu')(UpSampling2D(size=(2, 2))(convc))
upconv3 = Concatenate(axis=3)([conv3, upconv3])
upconv3 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), padding='same',
kernel_initializer='he_normal')(upconv3)
upconv3 = BatchNormalization()(upconv3)
upconv3 = Activation('relu')(upconv3)
upconv3 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(upconv3)
upconv3 = BatchNormalization()(upconv3)
upconv3 = Activation('relu')(upconv3)
upconv3 = Dropout(0.5)(upconv3)
upconv2 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal', activation='relu')(UpSampling2D(size=(2, 2))(upconv3))
upconv2 = Concatenate(axis=3)([conv2, upconv2])
upconv2 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), padding='same',
kernel_initializer='he_normal')(upconv2)
upconv2 = BatchNormalization()(upconv2)
upconv2 = Activation('relu')(upconv2)
upconv2 = Conv2D(2 * self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(upconv2)
upconv2 = BatchNormalization()(upconv2)
upconv2 = Activation('relu')(upconv2)
upconv2 = Dropout(0.5)(upconv2)
upconv1 = Conv2D(self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal', activation='relu')(UpSampling2D(size=(2, 2))(upconv2))
upconv1 = Concatenate(axis=3)([conv1, upconv1])
upconv1 = Conv2D(self.n_filters, (self.kernel_size, self.kernel_size), padding='same',
kernel_initializer='he_normal')(upconv1)
upconv1 = BatchNormalization()(upconv1)
upconv1 = Activation('relu')(upconv1)
upconv1 = Conv2D(self.n_filters, (self.kernel_size, self.kernel_size), strides=(1, 1), padding='same',
kernel_initializer='he_normal')(upconv1)
upconv1 = BatchNormalization()(upconv1)
upconv1 = Activation('relu')(upconv1)
upconv1 = Dropout(0.5)(upconv1)
final = Conv2D(self.n_outputs, (1, 1), strides=(1, 1), padding='same',
kernel_initializer='he_normal', activation='linear')(upconv1)
self.model = Model(inputs=inputs, outputs=final)
json_string = self.model.to_json()
f = open('{0}_model.json'.format(self.root), 'w')
f.write(json_string)
f.close()
def compile_network(self):
self.model.compile(loss='mse', optimizer=Adam(lr=1e-4))
def read_network(self):
print("Reading previous network...")
f = open('{0}_model.json'.format(self.root), 'r')
json_string = f.read()
f.close()
self.model = model_from_json(json_string)
self.model.load_weights("{0}_weights.hdf5".format(self.root))
def train(self, n_iterations):
print("Training network...")
# Callbacks
self.checkpointer = ModelCheckpoint(filepath="{0}_weights.hdf5".format(self.root), verbose=1,
save_best_only=True)
# Load loss History
n_val_loss = 0
if self.option == 'continue':
self.csv_logger = CSVLogger("{0}_loss.csv".format(self.root), separator=',', append=True)
list_val_loss = np.zeros(1)
with open("{0}_loss.csv".format(self.root)) as csvfile:
readcsv = csv.reader(csvfile, delimiter=',')
cnt = 0
for row in readcsv:
vl = row[2]
if cnt > 1:
list_val_loss = np.append(list_val_loss, np.float64(vl))
elif cnt == 1:
list_val_loss[0] = np.float64(vl)
cnt = cnt+1
n_val_loss = len(list_val_loss)
if n_val_loss > 1:
self.checkpointer.best = np.nanmin(list_val_loss, axis=None)
else:
self.checkpointer.best = list_val_loss[0]
print('Best val_loss: {0}'.format(self.checkpointer.best))
else:
self.csv_logger = CSVLogger("{0}_loss.csv".format(self.root), separator=',', append=False)
# Read training and validation sets
tmp = np.load(self.input_files_training)
input_train = tmp[self.input_keys_training]
tmp = np.load(self.output_files_training)
output_train = tmp[self.output_keys_training]
tmp = np.load(self.input_files_validation)
input_valid = tmp[self.input_keys_validation]
tmp = np.load(self.output_files_validdation)
output_valid = tmp[self.output_keys_validation]
# Adjust size
input_train = input_train[0:self.n_training, 0:self.nx, 0:self.ny, :]
output_train = output_train[0:self.n_training, 0:self.nx, 0:self.ny, :]
input_valid = input_valid[0:self.n_validation, 0:self.nx, 0:self.ny, :]
output_valid = output_valid[0:self.n_validation, 0:self.nx, 0:self.ny, :]
# Normalization
input_train = input_train / self.ic_tau_1_median
input_valid = input_valid / self.ic_tau_1_median
output_train[:, :, :, 0] = (output_train[:, :, :, 0] -
self.vx_tau_1_min) / (self.vx_tau_1_max - self.vx_tau_1_min)
output_train[:, :, :, 1] = (output_train[:, :, :, 1] -
self.vy_tau_1_min) / (self.vy_tau_1_max - self.vy_tau_1_min)
output_train[:, :, :, 2] = (output_train[:, :, :, 2] -
self.vx_tau_01_min) / (self.vx_tau_01_max - self.vx_tau_01_min)
output_train[:, :, :, 3] = (output_train[:, :, :, 3] -
self.vy_tau_01_min) / (self.vy_tau_01_max - self.vy_tau_01_min)
output_train[:, :, :, 4] = (output_train[:, :, :, 4] -
self.vx_tau_001_min) / (self.vx_tau_001_max - self.vx_tau_001_min)
output_train[:, :, :, 5] = (output_train[:, :, :, 5] -
self.vy_tau_001_min) / (self.vy_tau_001_max - self.vy_tau_001_min)
output_valid[:, :, :, 0] = (output_valid[:, :, :, 0] -
self.vx_tau_1_min) / (self.vx_tau_1_max - self.vx_tau_1_min)
output_valid[:, :, :, 1] = (output_valid[:, :, :, 1] -
self.vy_tau_1_min) / (self.vy_tau_1_max - self.vy_tau_1_min)
output_valid[:, :, :, 2] = (output_valid[:, :, :, 2] -
self.vx_tau_01_min) / (self.vx_tau_01_max - self.vx_tau_01_min)
output_valid[:, :, :, 3] = (output_valid[:, :, :, 3] -
self.vy_tau_01_min) / (self.vy_tau_01_max - self.vy_tau_01_min)
output_valid[:, :, :, 4] = (output_valid[:, :, :, 4] -
self.vx_tau_001_min) / (self.vx_tau_001_max - self.vx_tau_001_min)
output_valid[:, :, :, 5] = (output_valid[:, :, :, 5] -
self.vy_tau_001_min) / (self.vy_tau_001_max - self.vy_tau_001_min)
# Training process
self.model.fit(input_train, output_train, batch_size=self.batch_size, epochs=n_iterations, verbose=1,
steps_per_epoch=self.batches_per_epoch_training,
callbacks=[self.checkpointer, self.csv_logger],
validation_data=(input_valid, output_valid), validation_batch_size=self.batch_size,
validation_steps=self.batches_per_epoch_validation, initial_epoch=n_val_loss, shuffle=True)
# Aftermath
cnt = 0
with open("{0}_loss.csv".format(self.root)) as csvfile:
readcsv = csv.reader(csvfile, delimiter=',')
list_val_loss = np.zeros(1)
for row in readcsv:
vl = row[2]
if cnt > 1:
list_val_loss = np.append(list_val_loss, np.float64(vl))
elif cnt == 1:
list_val_loss[0] = np.float64(vl)
cnt = cnt+1
# Print min loss value
print("Nb. of iterations performed: {0}; Best value: {1}".format(cnt-1, np.amin(list_val_loss)))
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Train DeepVel')
parser.add_argument('-o', '--out', help='Output files')
parser.add_argument('-e', '--epochs', help='Number of epochs', default=10)
parser.add_argument('-n', '--noise', help='Noise to add during training', default=0.0)
parser.add_argument('-a', '--action', help='Action', choices=['start', 'continue'], required=True)
parser.add_argument('-p', '--properties',
help='File containing the simulation properties for normalization',
default='network/simulation_properties.npz')
parsed = vars(parser.parse_args())
root = parsed['out']
nEpochs = int(parsed['epochs'])
option = parsed['action']
noise = parsed['noise']
norm_filename = parsed['properties']
out = train_deepvel(root, noise, option, norm_filename)
if option == 'start':
out.define_network()
if option == 'continue':
out.read_network()
if option == 'start' or option == 'continue':
out.compile_network()
out.train(nEpochs)