forked from swh/ladspa
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhermes_filter_1200.xml
729 lines (597 loc) · 20.1 KB
/
hermes_filter_1200.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
<?xml version="1.0" ?>
<!DOCTYPE ladspa SYSTEM "ladspa-swh.dtd">
<?xml-stylesheet href="ladspa.css" type="text/css" ?>
<ladspa>
<global>
<meta name="maker" value="Steve Harris <steve@plugin.org.uk>"/>
<meta name="copyright" value="GPL"/>
<meta name="properties" value="HARD_RT_CAPABLE"/>
<code><![CDATA[
#include "ladspa-util.h"
#include "util/blo.h"
// Return the value of the LDO's for given coeffs
#define LFO(a,b) (a*lfo1 + b*lfo2)
// Ampmod / ringmod two signals together with given depth
#define RINGMOD(c,m,d) (c * ((d * 0.5f) * m + (2.0f - d)))
// Stuff needed for the soft clipping code
#define MAX_AMP 1.0f
#define CLIP 0.8f
#define CLIP_A ((MAX_AMP - CLIP) * (MAX_AMP - CLIP))
#define CLIP_B (MAX_AMP - 2.0f * CLIP)
// Constants to match filter types
#define F_LP 1
#define F_HP 2
#define F_BP 3
#define F_BR 4
#define F_AP 5
// Number of filter oversamples
#define F_R 3
// Magic number
#define NOISE 23
LADSPA_Data *sin_tbl, *tri_tbl, *saw_tbl, *squ_tbl;
int tbl_ref_count = 0;
long sample_rate;
/* Structure to hold parameters for SV filter */
typedef struct {
float f; // 2.0*sin(PI*fs/(fc*r));
float q; // 2.0*cos(pow(q, 0.1)*PI*0.5);
float qnrm; // sqrt(m/2.0f+0.01f);
float h; // high pass output
float b; // band pass output
float l; // low pass output
float p; // peaking output (allpass with resonance)
float n; // notch output
float *op; // pointer to output value
} sv_filter;
float soft_clip(float sc_in) {
if ((sc_in < CLIP) && (sc_in > -CLIP)) {
return sc_in;
} else if (sc_in > 0.0f) {
return MAX_AMP - (CLIP_A / (CLIP_B + sc_in));
} else {
return -(MAX_AMP - (CLIP_A / (CLIP_B - sc_in)));
}
}
/* Store data in SVF struct, takes the sampling frequency, cutoff frequency
and Q, and fills in the structure passed */
void setup_svf(sv_filter *sv, float fs, float fc, float q, int t) {
sv->f = 2.0f * sinf(M_PI * fc / (float)(fs * F_R));
sv->q = 2.0f * cosf(powf(q, 0.1f) * M_PI * 0.5f);
sv->qnrm = sqrtf(sv->q*0.5f + 0.01f);
switch(t) {
case F_LP:
sv->op = &(sv->l);
break;
case F_HP:
sv->op = &(sv->h);
break;
case F_BP:
sv->op = &(sv->b);
break;
case F_BR:
sv->op = &(sv->n);
break;
default:
sv->op = &(sv->p);
}
}
/* Change the frequency of a running SVF */
void setup_f_svf(sv_filter *sv, const float fs, const float fc) {
sv->f = 2.0f * sin(M_PI * fc / ((float)(fs * F_R)));
}
/* Run one sample through the SV filter. Filter is by andy@vellocet */
static inline float run_svf(sv_filter *sv, float in) {
float out;
int i;
in = sv->qnrm * in ;
for (i=0; i < F_R; i++) {
// only needed for pentium chips
in = flush_to_zero(in);
sv->l = flush_to_zero(sv->l);
// very slight waveshape for extra stability
sv->b = sv->b - sv->b * sv->b * sv->b * 0.001f;
// regular state variable code here
// the notch and peaking outputs are optional
sv->h = in - sv->l - sv->q * sv->b;
sv->b = sv->b + sv->f * sv->h;
sv->l = sv->l + sv->f * sv->b;
sv->n = sv->l + sv->h;
sv->p = sv->l - sv->h;
out = *(sv->op);
in = out;
}
return out;
}
static inline int wave_tbl(const float wave) {
switch (f_round(wave)) {
case 0:
return BLO_SINE;
break;
case 1:
return BLO_TRI;
break;
case 2:
return BLO_SAW;
break;
case 3:
return BLO_SQUARE;
break;
}
return NOISE;
}
]]></code>
</global>
<plugin label="hermesFilter" id="1200" class="FilterPlugin">
<name>Hermes Filter</name>
<p>This plugin is a simulation of a modern analogue synth called a Pro Tone, with some extra features bolted on, like a crossover. I tried to make it as comprehensive as possible, without requiring ludicrous amounts of CPU juice.</p>
<p>N.B. as far as I know, noone has tried to use this (I certainly haven't), so it may be full of bugs and what not. The parameters are all undocumented, but there is a diagram of the routing on the website. Without a custom interface however it would be very hard to use.</p>
<p>Historical note: the name is a bad pun, it comes from the name Hermes Trimegistus given to the Egyptian god Thoth by the greeks, it means Thrice Blessed, or something similar.</p>
<callback event="instantiate">
long i;
sample_rate = s_rate;
count = 0;
tables = blo_h_tables_new(1024);
osc1_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
osc2_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
lfo1_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
lfo2_d = blo_h_new(tables, BLO_SINE, (float)s_rate);
xover_b1_data = calloc(1, sizeof(sv_filter));
xover_b2_data = calloc(1, sizeof(sv_filter));
dela_data = malloc(3 * sizeof(float));
dela_pos = malloc(3 * sizeof(int));
filt_data = malloc(3 * sizeof(sv_filter *));
for (i = 0; i < 3; i++) {
dela_data[i] = malloc(sample_rate * 2 * sizeof(float));
dela_pos[i] = 0;
filt_data[i] = calloc(1, sizeof(sv_filter));
}
lfo1 = 0.0f;
lfo2 = 0.0f;
lfo1_phase = 0.0f;
lfo2_phase = 0.0f;
</callback>
<callback event="activate">
setup_svf(filt_data[0], 0, 0, 0, 0);
setup_svf(filt_data[1], 0, 0, 0, 0);
setup_svf(filt_data[2], 0, 0, 0, 0);
setup_svf(xover_b1_data, sample_rate, 1000.0, 0.0, F_HP);
setup_svf(xover_b2_data, sample_rate, 100.0, 0.0, F_LP);
memset(dela_data[0], 0, sample_rate * 2 * sizeof(float));
memset(dela_data[1], 0, sample_rate * 2 * sizeof(float));
memset(dela_data[2], 0, sample_rate * 2 * sizeof(float));
dela_pos[0] = 0;
dela_pos[1] = 0;
dela_pos[2] = 0;
/*
osc1_d->ph.all = 0;
osc2_d->ph.all = 0;
lfo1_d->ph.all = 0;
lfo2_d->ph.all = 0;
*/
count = 0;
lfo1 = 0.0f;
lfo2 = 0.0f;
lfo1_phase = 0.0f;
lfo2_phase = 0.0f;
</callback>
<callback event="cleanup">
free(plugin_data->filt_data[0]);
free(plugin_data->filt_data[1]);
free(plugin_data->filt_data[2]);
free(plugin_data->dela_data[0]);
free(plugin_data->dela_data[1]);
free(plugin_data->dela_data[2]);
free(plugin_data->filt_data);
free(plugin_data->dela_data);
free(plugin_data->dela_pos);
free(plugin_data->xover_b1_data);
free(plugin_data->xover_b2_data);
blo_h_free(plugin_data->osc1_d);
blo_h_free(plugin_data->osc2_d);
blo_h_free(plugin_data->lfo1_d);
blo_h_free(plugin_data->lfo2_d);
blo_h_tables_free(plugin_data->tables);
</callback>
<callback event="run" unused-vars="tables"><![CDATA[
unsigned long pos;
int i;
// dB gains converted to coefficients
float osc1_gain, rm1_gain, osc2_gain, rm2_gain, in_gain, rm3_gain;
// Output values for the oscilators etc.
float osc1, osc2, in, rm1, rm2, rm3, mixer1;
// Outputs from xover
float xover[3], band_gain[3];
// Output values for disortions
float dist[3];
// Stuff for distortions
float drive[3];
// Stuff for filters
float filt[3];
float filt_freq[3];
float filt_res[3];
float filt_lfo1[3];
float filt_lfo2[3];
int filt_t[3];
// Values for delays
float dela[3], dela_wet[3], dela_fb[3];
int dela_offset[3];
// Output of mixer2
float mixer2;
// X overs
const float xover_ufreq = f_clamp(xover_ufreqp, 200.0f, (float)(sample_rate / 6));
const float xover_lfreq = f_clamp(xover_lfreqp, 0.0f, xover_ufreq);
setup_f_svf(xover_b1_data, sample_rate, xover_ufreq);
setup_f_svf(xover_b2_data, sample_rate, xover_lfreq);
// Calculate delay offsets
dela_offset[0] = dela1_length * sample_rate;
dela_offset[1] = dela2_length * sample_rate;
dela_offset[2] = dela3_length * sample_rate;
for (i = 0; i < 3; i++) {
if (dela_offset[i] > sample_rate * 2 || dela_offset[i] < 0) {
dela_offset[i] = 0;
}
dela[i] = 0.0f;
filt_t[i] = 0;
}
// Convert dB gains to coefficients
osc1_gain = DB_CO(osc1_gain_db);
osc2_gain = DB_CO(osc2_gain_db);
in_gain = DB_CO(in_gain_db);
rm1_gain = DB_CO(rm1_gain_db);
rm2_gain = DB_CO(rm2_gain_db);
rm3_gain = DB_CO(rm3_gain_db);
band_gain[0] = DB_CO(band1_gain_db);
band_gain[1] = DB_CO(band2_gain_db);
band_gain[2] = DB_CO(band3_gain_db);
osc1_d->wave = wave_tbl(osc1_wave);
osc2_d->wave = wave_tbl(osc2_wave);
lfo1_d->wave = wave_tbl(lfo1_wave);
lfo2_d->wave = wave_tbl(lfo2_wave);
blo_hd_set_freq(osc1_d, osc1_freq);
blo_hd_set_freq(osc2_d, osc2_freq);
blo_hd_set_freq(lfo1_d, lfo1_freq * 16);
blo_hd_set_freq(lfo2_d, lfo2_freq * 16);
#define SETUP_F(n,f,q,t) setup_svf(filt_data[n], sample_rate, f, q, (int)t)
// Set filter stuff
SETUP_F(0, filt1_freq, filt1_q, filt1_type);
SETUP_F(1, filt2_freq, filt2_q, filt2_type);
SETUP_F(2, filt3_freq, filt3_q, filt3_type);
filt_freq[0] = filt1_freq;
filt_freq[1] = filt2_freq;
filt_freq[2] = filt3_freq;
filt_res[0] = filt1_res;
filt_res[1] = filt2_res;
filt_res[2] = filt3_res;
filt_lfo1[0] = filt1_lfo1;
filt_lfo1[1] = filt2_lfo1;
filt_lfo1[2] = filt3_lfo1;
filt_lfo2[0] = filt1_lfo2;
filt_lfo2[1] = filt2_lfo2;
filt_lfo2[2] = filt3_lfo2;
// Setup distortions
drive[0] = drive1;
drive[1] = drive2;
drive[2] = drive3;
// Setup delays
dela_wet[0] = dela1_wet;
dela_wet[1] = dela2_wet;
dela_wet[2] = dela3_wet;
dela_fb[0] = dela1_fb;
dela_fb[1] = dela2_fb;
dela_fb[2] = dela3_fb;
for (pos = 0; pos < sample_count; pos++) {
count++; // Count of number of samples processed
// Calculate oscilator values for this sample
if (osc1_d->wave == NOISE) {
osc1 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
} else {
osc1 = blo_hd_run_lin(osc1_d);
}
if (osc2_d->wave == NOISE) {
osc2 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
} else {
osc2 = blo_hd_run_lin(osc2_d);
}
// Calculate LFO values every 16 samples
if ((count & 15) == 1) {
// Calculate lfo values
if (lfo1_d->wave == NOISE) {
lfo1_phase += lfo1_freq;
if (lfo1_phase >= sample_rate) {
lfo1_phase -= sample_rate;
lfo1 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
}
} else {
lfo1 = blo_hd_run_lin(lfo1_d);
}
if (lfo2_d->wave == NOISE) {
lfo2_phase += lfo1_freq;
if (lfo2_phase >= sample_rate) {
lfo2_phase -= sample_rate;
lfo2 = rand() * (0.5f/(float)RAND_MAX) - 1.0f;
}
} else {
lfo2 = blo_hd_run_lin(lfo2_d);
}
}
in = input[pos];
rm1 = RINGMOD(osc2, osc1, rm1_depth);
rm2 = RINGMOD(in, osc2, rm2_depth);
rm3 = RINGMOD(osc1, in, rm3_depth);
mixer1 = (osc1 * osc1_gain) + (osc2 * osc2_gain) + (in * in_gain) +
(rm1 * rm1_gain) + (rm2 * rm2_gain) + (rm3 * rm3_gain);
mixer1 = soft_clip(mixer1);
// Higpass off the top band
xover[0] = run_svf(xover_b1_data, mixer1);
// Lowpass off the bottom band
xover[2] = run_svf(xover_b2_data, mixer1);
// The middle band is whats left
xover[1] = mixer1 - xover[0] - xover[2];
mixer2 = 0.0f;
for (i = 0; i < 3; i++) {
dist[i] = xover[i]*(fabs(xover[i]) + drive1)/(xover[i]*xover[i] + (drive[i]-1)*fabs(xover[i]) + 1.0f);
if (filt_t[i] == 0) {
filt[i] = dist[i];
} else {
if (count % 16 == 1) {
setup_f_svf(filt_data[i], sample_rate, filt_freq[i]+LFO(filt_lfo1[i], filt_lfo2[i]));
}
filt[i] = run_svf(filt_data[i], dist[i] + (filt_res[i] * (filt_data[i])->b));
}
dela[i] = (dela_data[i][dela_pos[i]] * dela_wet[i]) + filt[i];
dela_data[i][(dela_pos[i] + dela_offset[i]) %
(2 * sample_rate)] = filt[i] + (dela[i] * dela_fb[i]);
dela_pos[i] = (dela_pos[i] + 1) % (2 * sample_rate);
mixer2 += band_gain[i] * dela[i];
}
buffer_write(output[pos], soft_clip(mixer2));
}
plugin_data->count = count;
plugin_data->lfo1 = lfo1;
plugin_data->lfo2 = lfo2;
plugin_data->lfo1_phase = lfo1_phase;
plugin_data->lfo2_phase = lfo2_phase;
]]></callback>
<!-- LFO control -->
<port label="lfo1_freq" dir="input" type="control" hint="default_low">
<name>LFO1 freq (Hz)</name>
<range min="0" max="1000"/>
</port>
<port label="lfo1_wave" dir="input" type="control" hint="integer,default_0">
<name>LFO1 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = s&h)</name>
<range min="0" max="4"/>
</port>
<port label="lfo2_freq" dir="input" type="control" hint="default_low">
<name>LFO2 freq (Hz)</name>
<range min="0" max="1000"/>
</port>
<port label="lfo2_wave" dir="input" type="control" hint="integer,default_0">
<name>LFO2 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = s&h)</name>
<range min="0" max="4"/>
</port>
<!-- osc control -->
<port label="osc1_freq" dir="input" type="control" hint="default_440">
<name>Osc1 freq (Hz)</name>
<range min="0" max="4000"/>
</port>
<port label="osc1_wave" dir="input" type="control" hint="integer,default_0">
<name>Osc1 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = noise)</name>
<range min="0" max="4"/>
</port>
<port label="osc2_freq" dir="input" type="control" hint="default_440">
<name>Osc2 freq (Hz)</name>
<range min="0" max="4000"/>
</port>
<port label="osc2_wave" dir="input" type="control" hint="integer,default_0">
<name>Osc2 wave (0 = sin, 1 = tri, 2 = saw, 3 = squ, 4 = noise)</name>
<range min="0" max="4"/>
</port>
<!-- ringmod control -->
<port label="rm1_depth" dir="input" type="control" hint="default_0">
<name>Ringmod 1 depth (0=none, 1=AM, 2=RM)</name>
<range min="0" max="2"/>
</port>
<port label="rm2_depth" dir="input" type="control" hint="default_0">
<name>Ringmod 2 depth (0=none, 1=AM, 2=RM)</name>
<range min="0" max="2"/>
</port>
<port label="rm3_depth" dir="input" type="control" hint="default_0">
<name>Ringmod 3 depth (0=none, 1=AM, 2=RM)</name>
<range min="0" max="2"/>
</port>
<!-- mixer1 control -->
<port label="osc1_gain_db" dir="input" type="control" hint="default_minimum">
<name>Osc1 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="rm1_gain_db" dir="input" type="control" hint="default_minimum">
<name>RM1 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="osc2_gain_db" dir="input" type="control" hint="default_minimum">
<name>Osc2 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="rm2_gain_db" dir="input" type="control" hint="default_minimum">
<name>RM2 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="in_gain_db" dir="input" type="control" hint="default_0">
<name>Input gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="rm3_gain_db" dir="input" type="control" hint="default_minimum">
<name>RM3 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<!-- xover control -->
<port label="xover_lfreqp" dir="input" type="control" hint="default_low">
<name>Xover lower freq</name>
<range min="50" max="6000"/>
</port>
<port label="xover_ufreqp" dir="input" type="control" hint="default_high">
<name>Xover upper freq</name>
<range min="1000" max="10000"/>
</port>
<!-- distortion control -->
<port label="drive1" dir="input" type="control" hint="default_0">
<name>Dist1 drive</name>
<range min="0" max="3"/>
</port>
<port label="drive2" dir="input" type="control" hint="default_0">
<name>Dist2 drive</name>
<range min="0" max="3"/>
</port>
<port label="drive3" dir="input" type="control" hint="default_0">
<name>Dist3 drive</name>
<range min="0" max="3"/>
</port>
<!-- filter control -->
<port label="filt1_type" dir="input" type="control" hint="integer,default_0">
<name>Filt1 type (0=none, 1=LP, 2=HP, 3=BP, 4=BR, 5=AP)</name>
<range min="0" max="5"/>
</port>
<port label="filt1_freq" dir="input" type="control" hint="default_440">
<name>Filt1 freq</name>
<range min="0" max="8000"/>
</port>
<port label="filt1_q" dir="input" type="control" hint="default_0">
<name>Filt1 q</name>
<range min="0" max="1"/>
</port>
<port label="filt1_res" dir="input" type="control" hint="default_0">
<name>Filt1 resonance</name>
<range min="0" max="1"/>
</port>
<port label="filt1_lfo1" dir="input" type="control" hint="default_0">
<name>Filt1 LFO1 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt1_lfo2" dir="input" type="control" hint="default_0">
<name>Filt1 LFO2 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt2_type" dir="input" type="control" hint="integer,default_0">
<name>Filt2 type (0=none, 1=LP, 2=HP, 3=BP, 4=BR, 5=AP)</name>
<range min="0" max="5"/>
</port>
<port label="filt2_freq" dir="input" type="control" hint="default_440">
<name>Filt2 freq</name>
<range min="0" max="8000"/>
</port>
<port label="filt2_q" dir="input" type="control" hint="default_0">
<name>Filt2 q</name>
<range min="0" max="1"/>
</port>
<port label="filt2_res" dir="input" type="control" hint="default_0">
<name>Filt2 resonance</name>
<range min="0" max="1"/>
</port>
<port label="filt2_lfo1" dir="input" type="control" hint="default_0">
<name>Filt2 LFO1 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt2_lfo2" dir="input" type="control" hint="default_0">
<name>Filt2 LFO2 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt3_type" dir="input" type="control" hint="integer,default_0">
<name>Filt3 type (0=none, 1=LP, 2=HP, 3=BP, 4=BR, 5=AP)</name>
<range min="0" max="5"/>
</port>
<port label="filt3_freq" dir="input" type="control" hint="default_440">
<name>Filt3 freq</name>
<range min="0" max="8000"/>
</port>
<port label="filt3_q" dir="input" type="control" hint="default_0">
<name>Filt3 q</name>
<range min="0" max="1"/>
</port>
<port label="filt3_res" dir="input" type="control" hint="default_0">
<name>Filt3 resonance</name>
<range min="0" max="1"/>
</port>
<port label="filt3_lfo1" dir="input" type="control" hint="default_0">
<name>Filt3 LFO1 level</name>
<range min="-500" max="500"/>
</port>
<port label="filt3_lfo2" dir="input" type="control" hint="default_0">
<name>Filt3 LFO2 level</name>
<range min="-500" max="500"/>
</port>
<!-- delay control -->
<port label="dela1_length" dir="input" type="control" hint="default_0">
<name>Delay1 length (s)</name>
<range min="0" max="2"/>
</port>
<port label="dela1_fb" dir="input" type="control" hint="default_0">
<name>Delay1 feedback</name>
<range min="0" max="1"/>
</port>
<port label="dela1_wet" dir="input" type="control" hint="default_0">
<name>Delay1 wetness</name>
<range min="0" max="1"/>
</port>
<port label="dela2_length" dir="input" type="control" hint="default_0">
<name>Delay2 length (s)</name>
<range min="0" max="2"/>
</port>
<port label="dela2_fb" dir="input" type="control" hint="default_0">
<name>Delay2 feedback</name>
<range min="0" max="1"/>
</port>
<port label="dela2_wet" dir="input" type="control" hint="default_0">
<name>Delay2 wetness</name>
<range min="0" max="1"/>
</port>
<port label="dela3_length" dir="input" type="control" hint="default_0">
<name>Delay3 length (s)</name>
<range min="0" max="2"/>
</port>
<port label="dela3_fb" dir="input" type="control" hint="default_0">
<name>Delay3 feedback</name>
<range min="0" max="1"/>
</port>
<port label="dela3_wet" dir="input" type="control" hint="default_0">
<name>Delay3 wetness</name>
<range min="0" max="1"/>
</port>
<!-- mixer2 -->
<port label="band1_gain_db" dir="input" type="control" hint="default_0">
<name>Band 1 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="band2_gain_db" dir="input" type="control" hint="default_0">
<name>Band 2 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<port label="band3_gain_db" dir="input" type="control" hint="default_0">
<name>Band 3 gain (dB)</name>
<range min="-70" max="+20"/>
</port>
<!-- audio i/o -->
<port label="input" dir="input" type="audio">
<name>Input</name>
<range min="-1" max="+1"/>
</port>
<port label="output" dir="output" type="audio">
<name>Output</name>
<range min="-1" max="+1"/>
</port>
<instance-data label="tables" type="blo_h_tables *"/>
<instance-data label="osc1_d" type="blo_h_osc *"/>
<instance-data label="osc2_d" type="blo_h_osc *"/>
<instance-data label="lfo1_d" type="blo_h_osc *"/>
<instance-data label="lfo2_d" type="blo_h_osc *"/>
<instance-data label="lfo1" type="float"/>
<instance-data label="lfo2" type="float"/>
<instance-data label="lfo1_phase" type="float"/>
<instance-data label="lfo2_phase" type="float"/>
<instance-data label="filt_data" type="sv_filter **"/>
<instance-data label="xover_b1_data" type="sv_filter *"/>
<instance-data label="xover_b2_data" type="sv_filter *"/>
<instance-data label="dela_data" type="float **"/>
<instance-data label="dela_pos" type="int *"/>
<instance-data label="count" type="long"/>
</plugin>
</ladspa>