-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest_pymoNNto.py
315 lines (218 loc) · 9.08 KB
/
test_pymoNNto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import numpy as np
from PymoNNto.NetworkCore.Network import *
from PymoNNto.NetworkCore.Behavior import *
from PymoNNto.NetworkCore.Neuron_Group import *
from PymoNNto.NetworkCore.Synapse_Group import *
from PymoNNto.NetworkCore.Analysis_Module import *
from PymoNNto.Exploration.HelperFunctions import *
from PymoNNto.Exploration.StorageManager.StorageManager import *
from PymoNNto.Exploration.Evolution.Evolution import *
import os
import shutil
from PymoNNto.Exploration.Network_UI import *
import pytest
#from PyQt5.QtCore import QLibraryInfo
#os.environ["QT_QPA_PLATFORM_PLUGIN_PATH"] = QLibraryInfo.location(
# QLibraryInfo.PluginsPath
#)
folder = get_data_folder()+'/StorageManager/'
def clear_folder(f):
if os.path.isdir(folder+f+'/'):
shutil.rmtree(folder+f+'/')
class Counter(Behavior):
def initialize(self, neurons):
self.inc = self.parameter('inc', 1)
neurons.count = neurons.vector()
def iteration(self, neurons):
neurons.count += self.inc
def get_sample_network():
My_Network = Network()
My_Neurons = NeuronGroup(net=My_Network, tag='my_neurons', size=100, behavior={
1: Counter(inc='[2#I]'),
2: Recorder('count')
})
My_Synapses = SynapseGroup(net=My_Network, src=My_Neurons, dst=My_Neurons, tag='GLUTAMATE')
sm = StorageManager('test', random_nr=False, print_msg=False)
My_Network.initialize(storage_manager=sm)
return My_Network, My_Neurons, My_Synapses, sm
def get_sample_network_list():
My_Network = Network()
My_Neurons = NeuronGroup(net=My_Network, tag='my_neurons', size=100, behavior=[
Counter(inc='[2#I]'),
Recorder('count')
])
My_Synapses = SynapseGroup(net=My_Network, src=My_Neurons, dst=My_Neurons, tag='GLUTAMATE')
sm = StorageManager('test', random_nr=False, print_msg=False)
My_Network.initialize(storage_manager=sm)
return My_Network, My_Neurons, My_Synapses, sm
def test_basics():
net = Network()
NeuronGroup(net=net, tag='neurons', size=100, behavior={})
NeuronGroup(net=net, tag='neurons2', size=50, behavior={})
SynapseGroup(net=net, tag='syn', src='neurons', dst='neurons2', behavior={})
net.initialize()
zero_vec = net.neurons.vector()
one_vec = net.neurons.vector(1)
m10_vec = net.neurons.vector(-10)
bool_vec = net.neurons.vector(bool)
int_vec = net.neurons.vector(int)
uni_vec = net.neurons.vector('uniform')#, plot=True
rnd_vec = net.neurons.vector('random')#, plot=True
log_vec = net.neurons.vector('lognormal(mean=1, sigma=1)')#, plot=True
norm_vec = net.neurons.vector('normal(loc=1,scale=1)')#, plot=True
assert len(zero_vec) == 100 and zero_vec[0] == 0
assert len(one_vec) == 100 and one_vec[0] == 1
assert len(m10_vec) == 100 and m10_vec[0] == -10
assert bool_vec[0] == False and bool_vec.dtype == bool
assert int_vec[0] == 0 and int_vec.dtype == int
assert len(uni_vec) == 100 and uni_vec[0]>=0 and uni_vec[0]<=1
assert len(rnd_vec) == 100 and rnd_vec[0]>=0 and rnd_vec[0]<=1
assert len(log_vec) == 100
assert len(norm_vec) == 100
zero_mat = net.syn.matrix()
one_mat = net.syn.matrix(1)
m10_mat = net.syn.matrix(-10)
bool_mat = net.syn.matrix(bool)
int_mat = net.syn.matrix(int)
uni_mat = net.syn.matrix('uniform')#, plot=True
rnd_mat = net.syn.matrix('random')#, plot=True
log_mat = net.syn.matrix('lognormal(mean=1, sigma=1)')#, plot=True
norm_mat = net.syn.matrix('normal(loc=1,scale=1)')#, plot=True
assert zero_mat.shape[0] == 50 and zero_mat.shape[1] == 100 and zero_mat[0, 0] == 0
assert one_mat.shape[0] == 50 and one_mat.shape[1] == 100 and one_mat[0, 0] == 1
assert m10_mat.shape[0] == 50 and m10_mat.shape[1] == 100 and m10_mat[0, 0] == -10
assert bool_mat[0, 0] == False and bool_mat.dtype == bool
assert int_mat[0, 0] == 0 and int_mat.dtype == int
assert uni_mat.shape[0] == 50 and uni_mat.shape[1] == 100 and uni_mat[0, 0]>=0 and uni_mat[0, 0]<=1
assert rnd_mat.shape[0] == 50 and rnd_mat.shape[1] == 100 and rnd_mat[0, 0]>=0 and rnd_mat[0, 0]<=1
assert log_mat.shape[0] == 50 and log_mat.shape[1] == 100
assert norm_mat.shape[0] == 50 and norm_mat.shape[1] == 100
def test_behavior_and_tagging():
print()
# basic network
set_genome({'I': 1})
for My_Network, My_Neurons, My_Synapses, sm in [get_sample_network(), get_sample_network_list()]:
My_Network.simulate_iterations(1000)
My_Network.deactivate_behaviors('Counter')
My_Network.simulate_iterations(10)
My_Network.activate_behaviors('Counter')
My_Network.simulate_iterations(20)
My_Network.recording_off()
My_Network.simulate_iterations(30)
assert My_Network.iteration == 1000+10+20+30
assert np.mean(My_Neurons.count) == 1000+20+30
assert My_Synapses.src == My_Neurons
assert My_Synapses.dst == My_Neurons
assert My_Neurons.synapses(afferent, 'GLUTAMATE') == [My_Synapses]
assert len(My_Network.all_objects()) == 3
#tagging system
assert My_Network['my_neurons'] == [My_Neurons]
assert len(My_Network['count', 0]) == My_Network.iteration-30
My_Network.clear_recorder()
assert len(My_Neurons['count', 0]) == 0
assert My_Network.tag_shortcuts['my_neurons'] == My_Network['my_neurons']
if os.path.isdir(folder+'test/'):
shutil.rmtree(folder+'test/')
def test_storage_manager():
print()
clear_folder('test')
sm = StorageManager('test', print_msg=False)
assert os.path.isfile('Data/StorageManager/test/test/config.ini')
sm.save_param('k', 0)
assert sm.load_param('k') == 0
sm.save_param_dict({'k1': 1, 'k2': 2, 'k3': 3})
assert sm.load_param('k1') == 1
assert sm.load_param('k2') == 2
assert sm.load_param('k3') == 3
sm2 = StorageManager('test', print_msg=False)
sm2.save_param('k', 101)
sm2.save_param('k1', 102)
smg = StorageManagerGroup('test')
smg.sort_by('k')
k_pl = smg.get_param_list('k')
assert k_pl == [0, 101]
m_pl = smg.get_multi_param_list(['#SM#','k','k1'])
assert m_pl[0, 0].load_param('k') == 0
assert m_pl[0, 1].load_param('k') == 101
assert m_pl[1, 0] == 0
assert m_pl[1, 1] == 101
assert m_pl[2, 0] == 1
assert m_pl[2, 1] == 102
clear_folder('test')
def test_add_remove_behaviors():
print()
set_genome({'I': 1})
My_Network, My_Neurons, My_Synapses, sm = get_sample_network()
My_Neurons.count *= 0
My_Neurons.remove_behavior('Counter')
My_Network.simulate_iterations(10)
assert np.mean(My_Neurons.count) == 0
My_Neurons.add_behavior(0.5, Counter(inc='2'), initialize=True)
My_Network.simulate_iterations(10)
assert np.mean(My_Neurons.count) == 2*10
My_Neurons.remove_behavior('Counter')
My_Neurons.add_behavior(4, Counter(inc='2'), initialize=False)
assert np.mean(My_Neurons.count) == 2*10
if os.path.isdir(folder+'test/'):
shutil.rmtree(folder+'test/')
##########################UI
#pip install pytest-qt
'''
@pytest.fixture
def app(qtbot):
My_Network, My_Neurons, My_Synapses, sm = get_sample_network()
My_Network.simulate_iteration()
ui_app = Network_UI(My_Network, modules=get_default_UI_modules(), title='test', storage_manager=sm, group_display_count=1, reduced_layout=False)
ui_app.pause = True
qtbot.addWidget(ui_app.main_window)
return ui_app
def test_label(app):
assert app.width == 1200
def visible():
return True
for i in range(app.tabs.count()):
app.tabs.widget(i).isVisible=visible
for _ in range(10):
for module in app.modules:
module.update(app)
if os.path.isdir(folder+'test/'):
shutil.rmtree(folder+'test/')
############# Evolution
def test_evolution():
print()
#clear storage manager
clear_folder('pytest_evo')
genome = {'a': 1, 'b': 2, 'c': 2, 'd': 2, 'e':3}
evo = Evolution(name='pytest_evo',
slave_file='Exploration/Evolution/example_slave.py',
individual_count=2,
mutation=0.04,
death_rate=0.5,
constraints=['b>=a', 'a<=1', 'b>= 2'],
inactive_genome_info={'info': 'my_info'},
start_genomes=[genome],
devices={'single_thread': 1,
#'multi_thread': 4,
#'ssh user@host.de': 0,
}
)
for device in evo.devices:
device.start()
#run 10 full generations
for _ in range(3):
for device in evo.devices:
device.main_loop_update()
first_run_score = evo.scored_individuals[0].score
#continue
evo.load_state()
#run to full generations
for _ in range(3):
for device in evo.devices:
device.main_loop_update()
second_run_score = evo.scored_individuals[0].score
clear_folder('pytest_evo')
start_score = 7
assert first_run_score >= start_score
assert second_run_score >= first_run_score
assert evo.Breed_And_Select.generation == 3
'''