The following cheatsheet aims to give an overview of various things you can do with angr and act as a quick reference to check the syntax for something without having to dig through the deeper docs.
Some useful imports
import angr #the main framework
import claripy #the solver engine
Loading the binary
proj = angr.Project("/path/to/binary", auto_load_libs=False) # auto_load_libs False for improved performance
Create a SimState object
state = proj.factory.entry_state()
Generate a simulation manager object
simgr = proj.factory.simulation_manager(state)
Choosing a different Exploring strategy
simgr.use_technique(angr.exploration_techniques.DFS())
Symbolically execute until we find a state satisfying our find=
and avoid=
parameters
avoid_addr = [0x400c06, 0x400bc7]
find_addr = 0x400c10d
simgr.explore(find=find_addr, avoid=avoid_addr)
found = simgr.found[0] # A state that reached the find condition from explore
found.solver.eval(sym_arg, cast_to=str) # Return a concrete string value for the sym arg to reach this state
Symbolically execute until lambda expression is True
simgr.step(until=lambda sm: sm.active[0].addr >= first_jmp)
This is especially useful with the ability to access the current STDOUT or STDERR (1 here is the File Descriptor for STDOUT)
simgr.explore(find=lambda s: "correct" in s.posix.dumps(1))
Memory Managment on big searches (Auto Drop Stashes):
simgr.explore(find=find_addr, avoid=avoid_addr, step_func=lambda lsm: lsm.drop(stash='avoid'))
simgr.step(step_func=step_func, until=lambda lsm: len(sm.found) > 0)
def step_func(lsm):
lsm.stash(filter_func=lambda state: state.addr == 0x400c06, from_stash='active', to_stash='avoid')
lsm.stash(filter_func=lambda state: state.addr == 0x400bc7, from_stash='active', to_stash='avoid')
lsm.stash(filter_func=lambda state: state.addr == 0x400c10, from_stash='active', to_stash='found')
return lsm
Enable Logging output from Simulation Manager:
import logging
logging.getLogger('angr.manager').setLevel(logging.DEBUG)
Move Stash:
simgr.stash(from_stash="found", to_stash="active")
Drop Stashes:
simgr.drop(stash="avoid")
Create symbolic object
sym_arg_size = 15 #Length in Bytes because we will multiply with 8 later
sym_arg = claripy.BVS('sym_arg', 8*sym_arg_size)
Restrict sym_arg to typical char range
for byte in sym_arg.chop(8):
initial_state.add_constraints(byte >= '\x20') # ' '
initial_state.add_constraints(byte <= '\x7e') # '~'
Create a state with a symbolic argument
argv = [proj.filename]
argv.append(sym_arg)
state = proj.factory.entry_state(args=argv)
Use argument for solving:
sym_arg = angr.claripy.BVS("sym_arg", flag_size * 8)
argv = [proj.filename]
argv.append(sym_arg)
initial_state = proj.factory.full_init_state(args=argv, add_options=angr.options.unicorn, remove_options={angr.options.LAZY_SOLVES})
Calling a function from ipython
f = proj.factory.callable(address)
f(10)
x=claripy.BVS('x', 64)
f(x) #TODO: Find out how to make that result readable
If what you are interested in is not directly returned because for example the function returns the pointer to a buffer you can access the state after the function returns with
>>> f.result_state
<SimState @ 0x1000550>
Hooking
There are already predefined hooks for libc functions (useful for statically compiled libraries)
proj = angr.Project('/path/to/binary', use_sim_procedures=True)
proj.hook(addr, angr.SIM_PROCEDURES['libc']['atoi']())
Hooking with Simprocedure:
class fixpid(angr.SimProcedure):
def run(self):
return 0x30
proj.hook(0x4008cd, fixpid())
Drop into an ipython if a ctr+c is recieved (useful for debugging scripts that are running forever)
import signal
def killmyself():
os.system('kill %d' % os.getpid())
def sigint_handler(signum, frame):
print 'Stopping Execution for Debug. If you want to kill the programm issue: killmyself()'
if not "IPython" in sys.modules:
import IPython
IPython.embed()
signal.signal(signal.SIGINT, sigint_handler)
Get the calltrace of a state to find out where we got stuck
state = simgr.active[0]
print state.callstack
Get a basic block
block = proj.factory.block(address)
block.capstone.pp() #Capstone object has pretty print and other data about the dissassembly
block.vex.pp() #Print vex representation
Write to state:
aaaa = claripy.BVV(0x41414141, 32) # 32 = Bits
state.memory.store(0x6021f2, aaaa)
Read Pointer to Pointer from Frame:
poi1 = new_state.solver.eval(new_state.regs.rbp)-0x10
poi1 = new_state.mem[poi1].long.concrete
poi1 += 0x8
ptr1 = new_state.mem[poi1].long.concrete
Read from State:
key = []
for i in range(38):
key.append(extractkey.mem[0x602140 + i*4].int.concrete)
Alternatively, the below expression is equivalent
key = extractkey.mem[0x602140].int.array(38).concrete
Set Breakpoint at every Memory read/write:
new_state.inspect.b('mem_read', when=angr.BP_AFTER, action=debug_funcRead)
def debug_funcRead(state):
print 'Read', state.inspect.mem_read_expr, 'from', state.inspect.mem_read_address
Set Breakpoint at specific Memory location:
new_state.inspect.b('mem_write', mem_write_address=0x6021f1, when=angr.BP_AFTER, action=debug_funcWrite)