-
Notifications
You must be signed in to change notification settings - Fork 48
/
data_provider.py
335 lines (267 loc) · 11.6 KB
/
data_provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from functools import partial
from menpo.shape.pointcloud import PointCloud
from menpofit.builder import compute_reference_shape
from menpofit.builder import rescale_images_to_reference_shape
from menpofit.fitter import (noisy_shape_from_bounding_box,
align_shape_with_bounding_box)
from pathlib import Path
import joblib
import menpo.feature
import menpo.image
import menpo.io as mio
import numpy as np
import tensorflow as tf
import detect
import utils
FLAGS = tf.app.flags.FLAGS
def build_reference_shape(paths, diagonal=200):
"""Builds the reference shape.
Args:
paths: paths that contain the ground truth landmark files.
diagonal: the diagonal of the reference shape in pixels.
Returns:
the reference shape.
"""
landmarks = []
for path in paths:
path = Path(path).parent.as_posix()
landmarks += [
group.lms
for group in mio.import_landmark_files(path, verbose=True)
if group.lms.n_points == 68
]
return compute_reference_shape(landmarks,
diagonal=diagonal).points.astype(np.float32)
def grey_to_rgb(im):
"""Converts menpo Image to rgb if greyscale
Args:
im: menpo Image with 1 or 3 channels.
Returns:
Converted menpo `Image'.
"""
assert im.n_channels in [1, 3]
if im.n_channels == 3:
return im
im.pixels = np.vstack([im.pixels] * 3)
return im
def align_reference_shape(reference_shape, bb):
min_xy = tf.reduce_min(reference_shape, 0)
max_xy = tf.reduce_max(reference_shape, 0)
min_x, min_y = min_xy[0], min_xy[1]
max_x, max_y = max_xy[0], max_xy[1]
reference_shape_bb = tf.pack([[min_x, min_y], [max_x, min_y],
[max_x, max_y], [min_x, max_y]])
def norm(x):
return tf.sqrt(tf.reduce_sum(tf.square(x - tf.reduce_mean(x, 0))))
ratio = norm(bb) / norm(reference_shape_bb)
return tf.add(
(reference_shape - tf.reduce_mean(reference_shape_bb, 0)) * ratio,
tf.reduce_mean(bb, 0),
name='initial_shape')
def random_shape(gts, reference_shape, pca_model):
"""Generates a new shape estimate given the ground truth shape.
Args:
gts: a numpy array [num_landmarks, 2]
reference_shape: a Tensor of dimensions [num_landmarks, 2]
pca_model: A PCAModel that generates shapes.
Returns:
The aligned shape, as a Tensor [num_landmarks, 2].
"""
def synthesize(lms):
return detect.synthesize_detection(pca_model, menpo.shape.PointCloud(
lms).bounding_box()).points.astype(np.float32)
bb, = tf.py_func(synthesize, [gts], [tf.float32])
shape = align_reference_shape(reference_shape, bb)
shape.set_shape(reference_shape.get_shape())
return shape
def get_noisy_init_from_bb(reference_shape, bb, noise_percentage=.02):
"""Roughly aligns a reference shape to a bounding box.
This adds some uniform noise for translation and scale to the
aligned shape.
Args:
reference_shape: a numpy array [num_landmarks, 2]
bb: bounding box, a numpy array [4, ]
noise_percentage: noise presentation to add.
Returns:
The aligned shape, as a numpy array [num_landmarks, 2]
"""
bb = PointCloud(bb)
reference_shape = PointCloud(reference_shape)
bb = noisy_shape_from_bounding_box(
reference_shape,
bb,
noise_percentage=[noise_percentage, 0, noise_percentage]).bounding_box(
)
return align_shape_with_bounding_box(reference_shape, bb).points
def load_images(paths, group=None, verbose=True):
"""Loads and rescales input images to the diagonal of the reference shape.
Args:
paths: a list of strings containing the data directories.
reference_shape: a numpy array [num_landmarks, 2]
group: landmark group containing the grounth truth landmarks.
verbose: boolean, print debugging info.
Returns:
images: a list of numpy arrays containing images.
shapes: a list of the ground truth landmarks.
reference_shape: a numpy array [num_landmarks, 2].
shape_gen: PCAModel, a shape generator.
"""
images = []
shapes = []
bbs = []
reference_shape = PointCloud(build_reference_shape(paths))
for path in paths:
if verbose:
print('Importing data from {}'.format(path))
for im in mio.import_images(path, verbose=verbose, as_generator=True):
group = group or im.landmarks[group]._group_label
bb_root = im.path.parent.relative_to(im.path.parent.parent.parent)
if 'set' not in str(bb_root):
bb_root = im.path.parent.relative_to(im.path.parent.parent)
im.landmarks['bb'] = mio.import_landmark_file(str(Path(
'bbs') / bb_root / (im.path.stem + '.pts')))
im = im.crop_to_landmarks_proportion(0.3, group='bb')
im = im.rescale_to_pointcloud(reference_shape, group=group)
im = grey_to_rgb(im)
images.append(im.pixels.transpose(1, 2, 0))
shapes.append(im.landmarks[group].lms)
bbs.append(im.landmarks['bb'].lms)
train_dir = Path(FLAGS.train_dir)
mio.export_pickle(reference_shape.points, train_dir / 'reference_shape.pkl', overwrite=True)
print('created reference_shape.pkl using the {} group'.format(group))
pca_model = detect.create_generator(shapes, bbs)
# Pad images to max length
max_shape = np.max([im.shape for im in images], axis=0)
max_shape = [len(images)] + list(max_shape)
padded_images = np.random.rand(*max_shape).astype(np.float32)
print(padded_images.shape)
for i, im in enumerate(images):
height, width = im.shape[:2]
dy = max(int((max_shape[1] - height - 1) / 2), 0)
dx = max(int((max_shape[2] - width - 1) / 2), 0)
lms = shapes[i]
pts = lms.points
pts[:, 0] += dy
pts[:, 1] += dx
lms = lms.from_vector(pts)
padded_images[i, dy:(height+dy), dx:(width+dx)] = im
return padded_images, shapes, reference_shape.points, pca_model
def load_image(path, reference_shape, is_training=False, group='PTS',
mirror_image=False):
"""Load an annotated image.
In the directory of the provided image file, there
should exist a landmark file (.pts) with the same
basename as the image file.
Args:
path: a path containing an image file.
reference_shape: a numpy array [num_landmarks, 2]
is_training: whether in training mode or not.
group: landmark group containing the grounth truth landmarks.
mirror_image: flips horizontally the image's pixels and landmarks.
Returns:
pixels: a numpy array [width, height, 3].
estimate: an initial estimate a numpy array [68, 2].
gt_truth: the ground truth landmarks, a numpy array [68, 2].
"""
im = mio.import_image(path)
bb_root = im.path.parent.relative_to(im.path.parent.parent.parent)
if 'set' not in str(bb_root):
bb_root = im.path.parent.relative_to(im.path.parent.parent)
im.landmarks['bb'] = mio.import_landmark_file(str(Path('bbs') / bb_root / (
im.path.stem + '.pts')))
im = im.crop_to_landmarks_proportion(0.3, group='bb')
reference_shape = PointCloud(reference_shape)
bb = im.landmarks['bb'].lms.bounding_box()
im.landmarks['__initial'] = align_shape_with_bounding_box(reference_shape,
bb)
im = im.rescale_to_pointcloud(reference_shape, group='__initial')
if mirror_image:
im = utils.mirror_image(im)
lms = im.landmarks[group].lms
initial = im.landmarks['__initial'].lms
# if the image is greyscale then convert to rgb.
pixels = grey_to_rgb(im).pixels.transpose(1, 2, 0)
gt_truth = lms.points.astype(np.float32)
estimate = initial.points.astype(np.float32)
return pixels.astype(np.float32).copy(), gt_truth, estimate
def distort_color(image, thread_id=0, stddev=0.1, scope=None):
"""Distort the color of the image.
Each color distortion is non-commutative and thus ordering of the color ops
matters. Ideally we would randomly permute the ordering of the color ops.
Rather then adding that level of complication, we select a distinct ordering
of color ops for each preprocessing thread.
Args:
image: Tensor containing single image.
thread_id: preprocessing thread ID.
scope: Optional scope for op_scope.
Returns:
color-distorted image
"""
with tf.op_scope([image], scope, 'distort_color'):
color_ordering = thread_id % 2
if color_ordering == 0:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
elif color_ordering == 1:
image = tf.image.random_brightness(image, max_delta=32. / 255.)
image = tf.image.random_contrast(image, lower=0.5, upper=1.5)
image = tf.image.random_saturation(image, lower=0.5, upper=1.5)
image = tf.image.random_hue(image, max_delta=0.2)
image += tf.random_normal(
tf.shape(image),
stddev=stddev,
dtype=tf.float32,
seed=42,
name='add_gaussian_noise')
# The random_* ops do not necessarily clamp.
image = tf.clip_by_value(image, 0.0, 1.0)
return image
def batch_inputs(paths,
reference_shape,
batch_size=32,
is_training=False,
num_landmarks=68,
mirror_image=False):
"""Reads the files off the disk and produces batches.
Args:
paths: a list of directories that contain training images and
the corresponding landmark files.
reference_shape: a numpy array [num_landmarks, 2]
batch_size: the batch size.
is_traininig: whether in training mode.
num_landmarks: the number of landmarks in the training images.
mirror_image: mirrors the image and landmarks horizontally.
Returns:
images: a tf tensor of shape [batch_size, width, height, 3].
lms: a tf tensor of shape [batch_size, 68, 2].
lms_init: a tf tensor of shape [batch_size, 68, 2].
"""
files = tf.concat(0, [map(str, sorted(Path(d).parent.glob(Path(d).name)))
for d in paths])
filename_queue = tf.train.string_input_producer(files,
shuffle=is_training,
capacity=1000)
filename = filename_queue.dequeue()
image, lms, lms_init = tf.py_func(
partial(load_image, is_training=is_training,
mirror_image=mirror_image),
[filename, reference_shape], # input arguments
[tf.float32, tf.float32, tf.float32], # output types
name='load_image'
)
# The image has always 3 channels.
image.set_shape([None, None, 3])
if is_training:
image = distort_color(image)
lms = tf.reshape(lms, [num_landmarks, 2])
lms_init = tf.reshape(lms_init, [num_landmarks, 2])
images, lms, inits, shapes = tf.train.batch(
[image, lms, lms_init, tf.shape(image)],
batch_size=batch_size,
num_threads=4 if is_training else 1,
capacity=1000,
enqueue_many=False,
dynamic_pad=True)
return images, lms, inits, shapes