We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Description A clear and concise description of what the bug is. while loading pytorch bert jit model, a error happened.
E1120 06:45:27.081567 410 model_repository_manager.cc:813] failed to load 'bert_pt_cws' version 1: Internal: load failed for libtorch model -> 'bert_pt_cws': [enforce fail at inline_container.cc:137] . PytorchStreamReader failed reading zip archive: failed finding central directory frame #0: c10::ThrowEnforceNotMet(char const*, int, char const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, void const*) + 0x78 (0x7f862ddc7c38 in /opt/tensorrtserver/lib/libc10.so) frame #1: caffe2::serialize::PyTorchStreamReader::valid(char const*) + 0x8d (0x7f863293b65d in /opt/tensorrtserver/lib/libtorch.so) frame #2: caffe2::serialize::PyTorchStreamReader::init() + 0xa6 (0x7f863293f966 in /opt/tensorrtserver/lib/libtorch.so) frame #3: caffe2::serialize::PyTorchStreamReader::PyTorchStreamReader(std::unique_ptr<caffe2::serialize::ReadAdapterInterface, std::default_delete<caffe2::serialize::ReadAdapterInterface> >) + 0x53 (0x7f8632943813 in /opt/tensorrtserver/lib/libtorch.so) frame #4: <unknown function> + 0x59c020f (0x7f86339a120f in /opt/tensorrtserver/lib/libtorch.so) frame #5: torch::jit::load(std::unique_ptr<caffe2::serialize::ReadAdapterInterface, std::default_delete<caffe2::serialize::ReadAdapterInterface> >, c10::optional<c10::Device>, std::unordered_map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::hash<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::equal_to<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > >&) + 0x3a (0x7f86339a004a in /opt/tensorrtserver/lib/libtorch.so) frame #6: torch::jit::load(std::istream&, c10::optional<c10::Device>, std::unordered_map<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::hash<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::equal_to<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::allocator<std::pair<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > >&) + 0x79 (0x7f86339a02f9 in /opt/tensorrtserver/lib/libtorch.so) frame #7: <unknown function> + 0x1e98e2 (0x7f86cbac18e2 in /opt/tensorrtserver/lib/libtrtserver.so) frame #8: <unknown function> + 0x1ea623 (0x7f86cbac2623 in /opt/tensorrtserver/lib/libtrtserver.so) frame #9: <unknown function> + 0x1e28d4 (0x7f86cbaba8d4 in /opt/tensorrtserver/lib/libtrtserver.so) frame #10: <unknown function> + 0xe2b34 (0x7f86cb9bab34 in /opt/tensorrtserver/lib/libtrtserver.so) frame #11: <unknown function> + 0xe38c5 (0x7f86cb9bb8c5 in /opt/tensorrtserver/lib/libtrtserver.so) frame #12: <unknown function> + 0xbd66f (0x7f86cafc866f in /usr/lib/x86_64-linux-gnu/libstdc++.so.6) frame #13: <unknown function> + 0x76db (0x7f86cb6c06db in /lib/x86_64-linux-gnu/libpthread.so.0) frame #14: clone + 0x3f (0x7f86ca68588f in /lib/x86_64-linux-gnu/libc.so.6)
TRTIS Information What version of TRTIS are you using? 19.09-py3 Are you using the TRTIS container or did you build it yourself? container
To Reproduce Steps to reproduce the behavior: jit a bert model (pretrained + a dense layer) start trtserver
Expected behavior A clear and concise description of what you expected to happen.
The text was updated successfully, but these errors were encountered:
A few possible causes:
Sorry, something went wrong.
@taomiao I am closing this issue for now due to inactivity. Please re-open if you are still facing this issue.
No branches or pull requests
Description
A clear and concise description of what the bug is.
while loading pytorch bert jit model, a error happened.
TRTIS Information
What version of TRTIS are you using? 19.09-py3
Are you using the TRTIS container or did you build it yourself? container
To Reproduce
Steps to reproduce the behavior:
jit a bert model (pretrained + a dense layer)
start trtserver
Expected behavior
A clear and concise description of what you expected to happen.
The text was updated successfully, but these errors were encountered: