-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path620_fermat_generator.pl
158 lines (124 loc) · 8.46 KB
/
620_fermat_generator.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#!/usr/bin/perl
# Author: Daniel "Trizen" Șuteu
# Date: 07 October 2018
# https://github.com/trizen
# A simple algorithm for generating a subset of strong-Lucas pseudoprimes.
# See also:
# https://oeis.org/A217120 -- Lucas pseudoprimes
# https://oeis.org/A217255 -- Strong Lucas pseudoprimes
# https://oeis.org/A177745 -- Semiprimes n such that n divides Fibonacci(n+1).
# https://oeis.org/A212423 -- Frobenius pseudoprimes == 2,3 (mod 5) with respect to Fibonacci polynomial x^2 - x - 1.
use 5.020;
use warnings;
use experimental qw(signatures);
#use Math::AnyNum qw(prod powmod);
use Math::GMPz;
use Math::Prime::Util::GMP qw(vecprod);
use ntheory qw(forcomb forprimes kronecker divisors is_lucas_pseudoprime is_strong_lucas_pseudoprime lucas_sequence random_prime powmod);
use List::Util qw(uniq);
sub fibonacci_pseudoprimes ($limit, $callback) {
my %common_divisors;
my $r = random_prime(1e8);
my $r2 = random_prime(1e9);
die 'error' if $r <= 1e7;
die 'error' if $r2+1e7 <= $r;
while (<>) {
my $p = (split(' ', $_))[-1];
$p || next;
$p = Math::GMPz->new($p);
foreach my $d (divisors($p - 1)) {
if (powmod(2, $d, $p) == 1) {
push @{$common_divisors{$d}}, $p;
}
}
foreach my $d (divisors($p - kronecker($p, 5))) {
if ((lucas_sequence($p, 1, -1, $d))[0] == 0) {
push @{$common_divisors{$d}}, $p;
}
}
}
forprimes {
my $p = $_;
foreach my $d (divisors($p - 1)) {
if (powmod(2, $d, $p) == 1) {
push @{$common_divisors{$d}}, $p;
}
}
foreach my $d (divisors($p - kronecker($p, 5))) {
if ((lucas_sequence($p, 1, -1, $d))[0] == 0) {
push @{$common_divisors{$d}}, $p;
}
}
} 1e7;
forprimes {
my $p = $_;
foreach my $d (divisors($p - 1)) {
if (powmod(2, $d, $p) == 1) {
push @{$common_divisors{$d}}, $p;
}
}
foreach my $d (divisors($p - kronecker($p, 5))) {
if ((lucas_sequence($p, 1, -1, $d))[0] == 0) {
push @{$common_divisors{$d}}, $p;
}
}
} $r, $r+1e7;
forprimes {
my $p = $_;
foreach my $d (divisors($p - 1)) {
if (powmod(2, $d, $p) == 1) {
push @{$common_divisors{$d}}, $p;
}
}
foreach my $d (divisors($p - kronecker($p, 5))) {
if ((lucas_sequence($p, 1, -1, $d))[0] == 0) {
push @{$common_divisors{$d}}, $p;
}
}
} $r2, $r2+1e7;
my %seen;
foreach my $arr (values %common_divisors) {
@$arr = uniq(@$arr);
my $l = $#{$arr} + 1;
foreach my $k (2 .. $l) {
forcomb {
my $nstr = vecprod(@{$arr}[@_]);
my $n = Math::GMPz->new($nstr);
$callback->($n, @{$arr}[@_]) if !$seen{$nstr}++;
} $l, $k;
}
}
}
my @pseudoprimes;
sub is_fibonacci_pseudoprime($n) {
(lucas_sequence($n, 1, -1, $n - kronecker($n, 5)))[0] == 0;
}
fibonacci_pseudoprimes(
10_000,
sub ($n, @f) {
if (is_lucas_pseudoprime($n)) {
say $n;
#push @pseudoprimes, $n;
if (powmod(2, $n-1, $n) == 1) {
die "Found a BPSW counter-example: $n = prod(@f)";
}
}
if (powmod(2, $n-1, $n) == 1) {
#say "Fermat pseudoprime: $n";
if (kronecker($n, 5) == -1) {
if (is_fibonacci_pseudoprime($n)) {
die "Found a special pseudoprime: $n = prod(@f)";
}
}
}
#~ if (kronecker($n, 5) == -1) {
#~ if (powmod(2, $n-1, $n) == 1) {
#~ die "Found a Fibonacci special number: $n = prod(@f)";
#~ }
#~ }
}
);
#~ @pseudoprimes = sort { $a <=> $b } @pseudoprimes;
#~ say join(', ', @pseudoprimes);
__END__
5777, 10877, 75077, 100127, 113573, 161027, 162133, 231703, 430127, 635627, 851927, 1033997, 1106327, 1256293, 1388903, 1697183, 2263127, 2435423, 2662277, 3175883, 3399527, 3452147, 3774377, 3900797, 4109363, 4226777, 4403027, 4828277, 4870847, 5208377, 5942627, 6003923, 7353917, 8518127, 9401893, 9713027, 9793313, 9922337, 10054043, 11637583, 13277423, 13455077, 13695947, 14015843, 14985833, 15754007, 16485493, 16685003, 17497127, 19168477, 20018627, 22361327, 23307377, 24157817, 25948187, 27854147, 29395277, 29604893, 30299333, 31673333, 32702723, 34134407, 34175777, 36061997, 39247393, 39850127, 40928627, 41177993, 42389027, 42525773, 47297543, 49219673, 49476377, 50075027, 51931333, 53697953, 57464207, 59268827, 62133377, 64610027, 67237883, 70894277, 73295777, 73780877, 74580767, 75239513, 75245777, 75983627, 83241013, 83963177, 85015493, 85903277, 86023943, 87471017, 90686777, 91418543, 93400277, 98385377, 104943827, 106728053, 110734667, 116853827, 117772877, 122879063, 124477513, 131017577, 131990627, 136579127, 139904627, 142593827, 144967877, 146278373, 148472347, 153256277, 154308527, 157132127, 158197577, 163578827, 166850777, 168018353, 171579883, 177991277, 179295443, 184135673, 185504633, 186003827, 192227027, 202368143, 207023087, 210089303, 211099877, 213361937, 226525883, 229206347, 231437957, 247030877, 247882963, 253755053, 254194877, 257815277, 259179527, 264250367, 264689963, 276795217, 277932113, 280075277, 284828777, 290256947, 293485877, 306219377, 311387693, 312189697, 316701527, 320234777, 334046627, 344107133, 360783793, 375578683, 376682627, 386628527, 387009737, 400091327, 400657277, 401790377, 403675973, 409245563, 420717527, 432988877, 437118527, 438894377, 439744397, 443146057, 443969063, 448504697, 450825377, 455039027, 456780193, 461700077, 461807147, 464407883, 465964127, 468245207, 469721647, 475167377, 480053573, 480891143, 485326403, 495101777, 500337713, 504097397, 523827527, 540136277, 544339637, 558030527, 562046627, 570122027, 574181327, 577647017, 583031693, 584238563, 598147577, 623709217, 634888253, 638227127, 657665777, 659936423, 664939277, 670042903, 670786877, 686258627, 691455077, 692726473, 704907377, 727615877, 729645563, 731349233, 734498627, 747587777, 768614027, 772719947, 780421277, 788342777, 797102627, 799500077, 811541327, 812957903, 825393997, 839350363, 847053323, 847887823, 856901267, 863097377, 869420473, 873933527, 878330573, 922483693, 923962577, 930039743, 961095923, 969210377, 978920627, 979805777, 985125077, 1011449753, 1015183343, 1032469817, 1034663713, 1055586377, 1085197577, 1113330077, 1171643027, 1173580127, 1194143443, 1203809777, 1218575027, 1226486627, 1230253133, 1280000357, 1295786777, 1296805127, 1308489103, 1309056527, 1326270203, 1345118777, 1364001113, 1371177527, 1387768397, 1435476803, 1437954377, 1477822433, 1524039373, 1538321777, 1541651627, 1546097027, 1561706327, 1598226167, 1599941027, 1620370127, 1663923827, 1689403127, 1749213377, 1757470643, 1770571277, 1783687127, 1826950127, 1839059627, 1885440527, 1897742027, 1909027273, 1966151713, 1986232877, 2021685077, 2031527803, 2044641377, 2056699133, 2087064527, 2093530277, 2132534777, 2152172027, 2179815377, 2189069027, 2207635127, 2231621027, 2271885527, 2273233877, 2336003647, 2382397877, 2407312577, 2411416883, 2444927627, 2509684127, 2525294777, 2535254027, 2564590757, 2630493643, 2641736327, 2660668877, 2767644017, 2774193827, 2775683777, 2807065127, 2817978767, 2832598277, 2834103827, 2837116127, 2865812777, 2887050077, 2915997527, 2985547447, 3045706127, 3059770877, 3092714627, 3174423947, 3181427027, 3226253627, 3234291377, 3279487577, 3316826083, 3331524377, 3333157127, 3342962027, 3400444277, 3424906253, 3435168827, 3501798827, 3525270527, 3558410813, 3560625077, 3582599627, 3585571907, 3601246277, 3643805027, 3690049277, 3744599777, 3752161877, 3782019617, 3797343377, 3860348777, 3881456123, 3923872577, 3966509777, 4041679277, 4068854957, 4092184277, 4097614127, 4131655097, 4141182527, 4188641627, 4223494277, 4249267577, 4256645777, 4265877527, 4484755277, 4601042627, 4622170877, 4639493627, 4681974527, 4840050077, 4887391277, 4893325127, 4938314813, 4968798827, 4998750077, 5294024413, 6039541727, 11851534697, 22200933343, 35646833933, 68055160643, 92402327687, 98831168617, 101590045727, 192900153617, 353348357933, 353833078717, 671092578683, 1118047771487, 2270927963303, 3357827162143, 3601866154427, 3703263099587, 5324864903273, 7973122223753, 8932423389707, 18846129954107, 25022761143923, 29469429987317, 29536817792327, 61561639243505213