-
Notifications
You must be signed in to change notification settings - Fork 33
/
fermat_overpseudoprimes_in_range.pl
119 lines (87 loc) · 3.18 KB
/
fermat_overpseudoprimes_in_range.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
#!/usr/bin/perl
# Daniel "Trizen" Șuteu
# Date: 06 September 2022
# https://github.com/trizen
# Generate all the k-omega Fermat overpseudoprimes to a given base in a given range [a,b]. (not in sorted order)
# Definition:
# k-omega primes are numbers n such that omega(n) = k.
# See also:
# https://en.wikipedia.org/wiki/Almost_prime
# https://en.wikipedia.org/wiki/Prime_omega_function
# https://trizenx.blogspot.com/2020/08/pseudoprimes-construction-methods-and.html
use 5.020;
use warnings;
use ntheory qw(:all);
use experimental qw(signatures);
use Memoize qw(memoize);
memoize('inverse_znorder_primes');
sub divceil ($x, $y) { # ceil(x/y)
(($x % $y == 0) ? 0 : 1) + divint($x, $y);
}
sub inverse_znorder_primes ($base, $lambda) {
my %seen;
grep { !$seen{$_}++ } factor(subint(powint($base, $lambda), 1));
}
sub iterate_over_primes ($x, $y, $base, $lambda, $callback) {
if ($lambda > 1 and $lambda <= 100) {
foreach my $p (inverse_znorder_primes($base, $lambda)) {
next if $p < $x;
last if $p > $y;
znorder($base, $p) == $lambda or next;
$callback->($p);
}
return;
}
if ($lambda > 1) {
for (my $w = $lambda * divceil($x - 1, $lambda) ; $w <= $y ; $w += $lambda) {
if (is_prime($w + 1) and powmod($base, $lambda, $w + 1) == 1) {
$callback->($w + 1);
}
}
return;
}
for (my $p = (is_prime($x) ? $x : next_prime($x)) ; $p <= $y ; $p = next_prime($p)) {
$callback->($p);
}
}
sub fermat_overpseudoprimes_in_range ($A, $B, $k, $base, $callback) {
$A = vecmax($A, pn_primorial($k));
my $F;
$F = sub ($m, $lambda, $lo, $j) {
my $hi = rootint(divint($B, $m), $j);
$lo > $hi and return;
iterate_over_primes($lo, $hi, $base, $lambda, sub ($p) {
if ($base % $p != 0) {
for (my ($q, $v) = ($p, $m * $p) ; $v <= $B ; ($q, $v) = ($q * $p, $v * $p)) {
my $z = znorder($base, $q);
if ($lambda > 1) {
$lambda == $z or last;
}
gcd($v, $z) == 1 or last;
if ($j == 1) {
$v >= $A or next;
$k == 1 and is_prime($v) and next;
($v - 1) % $z == 0 or next;
$callback->($v);
next;
}
$F->($v, $z, $p + 1, $j - 1);
}
}
});
};
$F->(1, 1, 2, $k);
undef $F;
}
# Generate all the Fermat overpseudoprimes to base 2 in the range [1, 1325843]
my $from = 1;
my $upto = 1325843;
my $base = 2;
my @arr;
foreach my $k (1 .. 100) {
last if pn_primorial($k) > $upto;
fermat_overpseudoprimes_in_range($from, $upto, $k, $base, sub ($n) { push @arr, $n });
}
say join(', ', sort { $a <=> $b } @arr);
__END__
2047, 3277, 4033, 8321, 65281, 80581, 85489, 88357, 104653, 130561, 220729, 253241, 256999, 280601, 390937, 458989, 486737, 514447, 580337, 818201, 838861, 877099, 916327, 976873, 1016801, 1082401, 1145257, 1194649, 1207361, 1251949, 1252697, 1325843