-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRoIDE_train.py
228 lines (170 loc) · 8.82 KB
/
RoIDE_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Andrew Bui
# National Taipei University of Technology
# Updated in 1/2025
# trongan93@ntut.edu.tw
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # remember to set 1 when runing on server 38
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import sys
import argparse
import time
import dataloader
import model
import fusenet
import Myloss
import fusion_loss
import numpy as np
from torchvision import transforms
# Suppress all warnings
import warnings
warnings.filterwarnings('ignore')
import wandb
# start a new wandb run to track this script
wandb.init(
# set the wandb project where this run will be logged
project="RoIDE-Net",
mode="online", # mode: online, disabled
# track hyperparameters and run metadata
config={
"learning_rate": 0.02,
"architecture": "RoIDE-Net",
"dataset": "SDR-satellite",
"epochs": 5,
}
)
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def train(config):
# Define the training model
scale_factor = config.scale_factor
HDR_net = model.HDRNet(scale_factor).cuda() # HDR Net
Fusion_net = fusenet.Fusion_module(channels=3,r=2).cuda()
# Define the Data loader
if config.load_pretrain == True:
HDR_net.load_state_dict(torch.load(config.pretrain_dir))
train_dataset = dataloader.lowlight_loader(config.lowlight_images_path)
print(config.lowlight_images_path)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)
# Define the loss function
L_color = Myloss.L_color(8)
L_spa = Myloss.L_spa()
L_exp = Myloss.L_exp(16)
L_TV = Myloss.L_TV()
L_kl = Myloss.L_KDL("mean")
# Define data batch and amount
dataAmount = train_dataset.__len__()
batchSize = config.train_batch_size
# Define optimizer
optimizer_hdr_net = torch.optim.Adam(HDR_net.parameters(), lr=config.lr, weight_decay=config.weight_decay)
optimizer_fusion_net = torch.optim.Adam(Fusion_net.parameters(), lr=config.lr, weight_decay=config.weight_decay)
# Define train model
HDR_net.train()
Fusion_net.train()
# torch.autograd.set_detect_anomaly(True) # Enable anomaly detection
for epoch in range(config.num_epochs):
completeSum = 0
for iteration, img_lowlight in enumerate(train_loader):
# loading model to GPU and define the config of exposure
img_lowlight = img_lowlight.cuda()
b, _, _, _ = img_lowlight.size()
E_min = 0.4 # test case 1: 0.8
E_max = 0.6 # test case 1: 0.2
# Zero the gradients for both optimizers at the beginning of each iteration.
optimizer_hdr_net.zero_grad()
optimizer_fusion_net.zero_grad()
# TRAIN HDR NET MODEL
x1, x2, x3, x4, x5, x6, x7, x8, x16, x_r = HDR_net(img_lowlight)
x_min_integrated = x1
x_medium_integrated = x4
x_max_integrated = x8
loss_tv_noweight = L_TV(x_r)
Loss_TV = 7000 * loss_tv_noweight
wandb.log({"loss_tv_noweight": loss_tv_noweight, 'epoch': epoch})
loss_spa_noweight = torch.mean(L_spa(x_max_integrated, img_lowlight))
loss_spa = 100 * loss_spa_noweight
wandb.log({"loss_spa_noweight": loss_spa_noweight, 'epoch': epoch})
# loss_exp_noweight = (torch.mean(L_exp(x_max_integrated,E_max)) + torch.mean(L_exp(x_min_integrated, E_min)))/2
loss_exp_noweight = torch.mean(L_exp(x_max_integrated, E_max))
loss_exp = 50*loss_exp_noweight
wandb.log({"loss_exp": loss_exp, 'epoch': epoch})
loss_col = torch.mean(L_color(x_max_integrated))
loss_kl_rb, loss_kl_rg, loss_kl_gb, loss_kl = L_kl(img_lowlight, x_max_integrated)
wandb.log({"loss_kl_rb": loss_kl_rb, 'epoch': epoch})
wandb.log({"loss_kl_rg": loss_kl_rg, 'epoch': epoch})
wandb.log({"loss_kl_gb": loss_kl_gb, 'epoch': epoch})
wandb.log({"loss_kl_noweight": loss_kl, 'epoch': epoch})
loss_kl = 5 * loss_kl
loss_hdr_net = Loss_TV + loss_spa + loss_exp + loss_col + loss_kl
# loss_hdr_net = Loss_TV + loss_spa + loss_exp + loss_col
wandb.log({"loss_hdr_net": loss_hdr_net, 'epoch': epoch})
loss_hdr_net.backward(retain_graph=True)
torch.nn.utils.clip_grad_norm(HDR_net.parameters(),config.grad_clip_norm) # prevent gradient explode
optimizer_hdr_net.step()
# TRAIN FUSION NET MODEL
x_integrated_min_deatach = x_min_integrated.detach()
x_integrated_medium_deatach = x_medium_integrated.detach()
x_integrated_max_deatach = x_max_integrated.detach()
fused_result = Fusion_net(x_integrated_min_deatach, x_integrated_max_deatach)
# loss_col_2 = torch.mean(L_color(fusion_net_result))
loss_total, loss_intensity, loss_grad, loss_ssim= fusion_loss.Fusion_loss(x_integrated_min_deatach,x_integrated_max_deatach,fused_result)
wandb.log({"loss_fusion_net_intensity": loss_intensity, 'epoch': epoch})
wandb.log({"loss_fusion_net_grad": loss_grad, 'epoch': epoch})
wandb.log({"loss_fusion_net_ssim": loss_ssim, 'epoch': epoch})
wandb.log({"loss_fusion_net_total": loss_total, 'epoch': epoch})
loss_fusion_net = loss_total
wandb.log({"loss_fusion_net": loss_fusion_net, 'epoch': epoch})
loss_fusion_net.backward()
torch.nn.utils.clip_grad_norm(Fusion_net.parameters(), config.grad_clip_norm) # prevent gradient explode
optimizer_fusion_net.step()
completeSum += b
pComplete = int(completeSum / dataAmount * 100) // 2
pUndo = int((1 - (completeSum / dataAmount)) * 100) // 2
if ((iteration+1) % config.display_iter) == 0:
print("Epoch : "+ str(epoch + 1) + " [" + "-"*pComplete + ">" + " "*pUndo + "] - loss_hdr_net: " + str(loss_hdr_net.item()) + " - loss_fusion_net: " + str(loss_fusion_net.item()), "\r", end='')
# torch.autograd.set_detect_anomaly(False) # Disable anomaly detection after training
if ((epoch + 1) % 10) == 0:
print("Saving Model " + config.snapshots_folder + "RoIDE-Net_HDR_net_Epoch" + str((epoch + 1)) + '.pth' + " with Epoch " + str((epoch + 1)))
torch.save(HDR_net.state_dict(), config.snapshots_folder + "RoIDE-Net_HDR_net_Epoch" + str((epoch + 1)) + '.pth')
print("Saving Model " + config.snapshots_folder + "RoIDE-Net_Fusion_net_Epoch" + str(
(epoch + 1)) + '.pth' + " with Epoch " + str((epoch + 1)))
torch.save(Fusion_net.state_dict(), config.snapshots_folder + "RoIDE-Net_Fusion_net_Epoch" + str((epoch + 1)) + '.pth')
print("Model Saved\n\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--ldr_images_path', type=str, default="/satellite_ldr_imgs/")
# local trongan lab pc: /mnt/d/ZeroDCEDataSet/ZeroDCE/satellite_ldr_imgs/
# server 38 : /mnt/d/satellite_ldr_imgs/
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--grad_clip_norm', type=float, default=0.1)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--train_batch_size', type=int, default=16)
parser.add_argument('--val_batch_size', type=int, default=8)
parser.add_argument('--num_workers', type=int, default=16)
parser.add_argument('--display_iter', type=int, default=10)
parser.add_argument('--snapshot_iter', type=int, default=10)
parser.add_argument('--scale_factor', type=int, default=1)
parser.add_argument('--snapshots_folder', type=str, default="./snapshots_weight_trongan93_RoIDE-Net_8_inter/")
parser.add_argument('--load_pretrain', type=bool, default= False)
# parser.add_argument('--pretrain_dir', type=str, default= "./snapshots_weight_trongan93/Epoch99.pth") #Need change the model path
# parser.add_argument("--gpu_devices", type=int, nargs='+', default=None, help="")
config = parser.parse_args()
# gpu_devices = ','.join([str(id) for id in config.gpu_devices])
# os.environ["CUDA_VISIBLE_DEVICES"] = gpu_devices
if not os.path.exists(config.snapshots_folder):
os.mkdir(config.snapshots_folder)
# print arguments
for arg in vars(config):
print(arg, getattr(config, arg))
train(config)